Ingeteam

INGECON SUN 3Play TL U M

Installation and Operation Manual Manual de instalación y uso

ABO2012IQM01_ 02/2016

Ingeteam Inc

3550 W. Canal St. Milwaukee, WI 53208 - USA Tel.: +1 (414) 934 4100 Fax.: +1 (414) 342 0736 e-mail: solar.us@ingeteam.com

Service Call Center: +1 (414) 934 4158

Ingeteam Power Technology, S.A. - Energy

Avda. Ciudad de la Innovación, 13 31621 SARRIGUREN (Navarra) - Spain Tel.: +34 948 28 80 00 Fax.: +34 948 28 80 01 e-mail: solar.energy@ingeteam.com

Service Call Center: +34 948 698 715

English	ΕN
Español	ES

Ingeteam

The copy, distribution or use of this document or of its content requires written authorisation. Any breach thereof will be reported for damages. All rights reserved including those of patent rights or design registration.

The conformity of the document content with the hardware described has been checked. However, discrepancies may exist. Liability will not be assumed for total concordance. The information contained in this document is regularly reviewed and it is possible that there may be changes in subsequent editions. Other functions may be available which are not covered by this document.

This document may be changed.

La copia, circulación o uso de este documento o de su contenido requiere un permiso por escrito. Su incumplimiento será denunciado por daños y perjuicios. Todos los derechos están reservados, incluyendo aquellos que resulten de derechos de patentes o registro del diseño.

La correspondencia del contenido del documento con el hardware ha sido comprobada. Sin embargo, pueden existir discrepancias. No se asume ninguna responsabilidad por la concordancia total. La información que contiene este documento es revisada regularmente y es posible que se produzcan cambios en siguientes ediciones.

El presente documento es susceptible de ser modificado.

Important Safety Instructions

This section describes the safety warnings and the Personal Protective Equipment used in the unit.

Safety conditions

General warnings

The operations described in this manual may be performed only by qualified personnel.

The status of qualified personnel referred to in this manual will be, as a minimum, that which meets all the standards, regulations and laws regarding safety applicable to the tasks of installing and operating this unit.

You must comply with all applicable safety-related legislation for electrical work. Danger of electric shock.

Compliance with the safety instructions set out in this manual or in the suggested legislation does not imply exemption from other specific standards for the installation, place, country or other circumstances that affect the inverter.

Opening the door of the housing does not imply there is no voltage inside.

There is a risk of electric shock even after disconnecting all power sources from the system.

Only qualified personnel may open it, following the instructions in this manual.

The entire manual must be read and understood in full prior to manipulating, installing or operating the unit.

Carry out all control and handling without voltage.

As a minimum security measure in this operation, you must always follow the so-called **5 golden rules**:

- 1. Disconnect.
- 2. Prevent any possible feedback.
- 3. Check there is no voltage.
- 4. Ground and short circuit.

5. Protect from live elements, if any, and put up safety signs around the work area.

Until you have completed these five steps, the work area cannot be considered voltage-free and any work performed will be considered to be work on live equipment.

Category III - 1000-Volt measuring instruments must be used for checking for the absence of voltage.

Ingeteam accepts no liability for any damages caused by improper use of the unit. You must propose in advance to Ingeteam any work carried out on any equipment which implies a modification of the original electrical arrangements. These must be studied and approved by Ingeteam.

Potential hazards for people

The equipment may remain charged after disconnecting the renewable power supply.

Carefully follow the mandatory steps in the manual for removing the voltage.

Always follow the indications in the manual on moving and placing the unit.

The weight of this unit can cause injury if not handled correctly.

DANGER: High temperature.

The flow of outlet air can reach high temperatures which can cause injury to anybody exposed to it.

Potential hazards for the equipment

The unit requires impurity-free air flow while it is operating.

Keeping the inlets free of obstacles is essential for this air flow to refrigerate the unit.

After all duly authorized handling, check that the inverter is ready to start operation. Only after this can you connect it, following the instructions in the manual.

Do not touch boards or electronic components. The more sensitive components can be damaged or destroyed by static electricity.

Do not disconnect or connect any terminal while the unit is operating. Disconnect and check for absence of voltage first.

Personal Protective Equipment (PPE)

When working on the unit, use the following safety equipment recommended by Ingeteam as a minimum.

Name	Explanation
Safety footwear	In compliance with standardANSI Z41.1-1991
Helmet with face shield	In compliance with standard <i>ANSI Z89.1-2014</i> , provided there are elements with voltage directly accessible.
Working clothes	Close-fitting, non-flammable, 100% cotton
Dielectric gloves	In compliance with standard ASTM D 120-87

Tools and / or equipment used in live work must have at least Category III-1000 Volts insulation.

Should the country's regulations demand another kind of personal protection, you should appropriately supplement the equipment recommended by Ingeteam.

Symbols on the inverters

Contents

mportant Safety Instructions				
Contents	Contents 8			
 About this manual 1.1. Scope and nomenclature 1.2. Recipients 1.3. Symbols 	10 10 10 10			
 2. Unit description	11 11 11 12 12 12 12 12			
2.9. Configuration parameters 2.10. Description of cable inlets	14 15			
 Receipt of the unit and storage. Reception	16 16 16 16 16			
 4. Transporting the equipment	17 17 17			
 5. Preparation for installing the unit	20 21 21 22 22 22 22			
 6. Installing the unit	23 23 23 26			
 7. Connection of accessories	27 28 29 30 31 32 33 33			
 8. AC connection. 8.1. Safety instructions for the AC connection. 8.2. Wiring requirements for the AC connection. 8.3. AC connection process. 	34 34 34 34			

9. DC connection	36
9.1. Safety instructions for the DC connection	36
9.2. Wiring requirements for the DC connection	36
9.3. DC connection process	36
10 Display control	38
10 Keypad and LEDs	38
10.1. Replay	30
10.2. Display	10
10.3. Mein menu	4 0 Л1
10.4. Wall micro	41 //1
10.5. The unit's first configuration	41 //1
10.7. Configuring the country/ regulation	41 //1
10.7. Comparing the Country regulation	41
10.0. Comparing the mouther relev	41
10.10. Configuring the apping of the	42
10.10. Conliguring the cosine of pm	42
10.11. Configure the inverter to work in self-consumption mode	42
10.12. Configure the inverter to work in a grid with diesel generator.	42
10.13. Place the inverter in operating mode.	42
10.14. Place the inverter in stop mode	42
10.15. See the daily power graph	43
10.16. See the energy graph for the last 24 days	43
10.17. Monitor the inverter's variables	43
10.18. List of alarms, notifications and reasons for shutdown	45
10.19. See inverter data	45
10.20. Reset to default settings	46
10.21. Perform a ventilation test	46
10.22. Change display language	46
10.23. Change date and time	46
10.24. Perform a partial delete of accumulated data	46
10.25. Block inverter screen	46
11 First connection to the grid	17
11. Unit connection	47
	47
11.1.2. Hormetic cooling of the unit	47
11.1.2. Trefinetic sealing of the diff.	47
	47
12. Firmware update	49
12. Chutting down the unit	FO
13. Sinditing down the unit	50
15.1. Process of shutting down the unit	00
14. Maintenance	51
14.1. Safety conditions	51
14.2. Condition of the housing	51
14.3. Condition of cables and terminals	51
14.4. Cooling system	51
1E Tracklasherting	г о
15. Iroublesnooting	52
10.1. Alarms. LED messages	52
16. Waste handling	54
-	

1. About this manual

The purpose of this manual is to describe the INGECON SUN 3Play T L U M units and to provide appropriate information for their correct reception, installation, start-up, maintenance and operation.

1.1. Scope and nomenclature

This manual is applicable to the following units:

Complete name	Abbreviation
INGECON SUN 40TL U M480	40TL U M480

This document will refer to the various models by both their complete name and their abbreviation. Similarly, it will refer generically to any of the models in the INGECON SUN 3Play T L U M families with the terms *unit* or *inverter*.

1.2. Recipients

This document is intended for qualified personnel.

The status of qualified personnel referred to in this manual will be, as a minimum, that which meets all the standards, regulations and laws regarding safety applicable to the tasks of installing and operating this unit.

The responsibility for designating qualified personnel will always fall to the company to which the personnel belong. It is necessary to decide which workers are suitable or not for carrying out specific work to preserve their safety at the same time as complying with occupational safety legislation.

These companies are responsible for providing appropriate training in electrical equipment to their personnel and for familiarizing them with the contents of this manual.

1.3. Symbols

This manual uses various symbols to emphasize and highlight certain texts. The general meanings are explained below.

General warning.

Electrical danger.

Hot surface.

2. Unit description

2.1. Overview

The basic purpose of an inverter is to convert the direct current generated by the PV array into alternating current to feed into the electricity grid.

The power structure of these inverters achieves a high performance with a flat curve, minimizing the cost and weight of the inverter.

As standard the inverter includes communication via RS-485, an SD card reader for updating the firmware and potential-free relay for signaling.

2.2. Optional accessories

These units may include the following accessories:

- DC arresters.
- Communications accessories.
- Digital input card.
- Self-consumption kit.
- Combiner box.

DC arresters

Optionally, these units may incorporate two DC arresters, one per PV array.

Communication accessories

As standard these units have local communication via RS-485. In addition there is the option of establishing connections using other technology types:

- Ethernet (including communication via RS-485, for optional use).
- Ethernet TCP (including communication via RS-485, for optional use).
- GSM/GPRS (including communication via RS-485, for optional use).
- Bluetooth.
- Bluetooth (including communication via RS-485, for optional use).
- Wi-Fi (including communication via RS-485, for optional use).

The instructions for installing the communications accessories are indicated throughout this manual. For more information on their functioning, consult the corresponding communication accessories manual.

Digital input cards

In certain countries this card is necessary to comply with their regulations.

Self-consumption kit

These inverters are compatible with all the self-consumption options offered by Ingeteam.

Combiner box

Ingeteam has a combiner box, which is recommended for these inverters. Additionally, it is possible to use a combiner box from an external manufacturer.

In the event of using a combiner box from an another manufacturer, the installer is responsible for ensure that it complies with all the applicable legislation, and, particularly, necessary requirements for operation together with a PV inverter in accordance with *UL1741*.

2.3. Electrical safety

The design values for electrical safety can be found below.

2.4. Contamination class

The units comply with pollution class 2, as required for this type of inverter.

2.5. Acoustic contamination

The unit produces a slight buzz when in operation. Do not place it in an occupied room, or on light supports which might amplify this buzz. The mounting surface must be firm and appropriate for the weight of the unit.

2.6. Electrical diagram of the system

• Optional.

• Combiner box (optional).

2.7. Grid configurations

The following grid configuration should be used for these units.

480 V WYE

2.8. Specifications tables

	40TL U M480
DC inputs	
Recommended power range of PV array (1)	24.7 ~ 32.2 kWp
Maximum input voltage (2)	1000 V
Voltage range MPP1 (3)	200 ~ 820 V
Voltage range MPP2 (3)	200 ~ 820 V
Operating voltage range	200 ~ 1000 V
Minimum voltage for Pnom	520 V
Maximum short circuit current (input 1 / input 2)	44 / 44 A
Maximum inverter backfeed current to the PV array.	0 A rms
MPPT	2
Number of strings (input 1 / input 2)	1/1
Maximum input current (input 1 / input 2)	40 / 40 A
Maximum input current per string ⁽⁴⁾	12 A
AC output	
Rated power	40 kW
Maximum continuous power	40 kW
Max. temperature for nominal power (5)	113 °F (45 °C)
Maximum current	48 A
Maximum transient current	48 A
Maximum output fault current	52.8 A @ 60 ms
Maximum output overcurrent protection	52.8 A rms
Rated voltage	480 V
Voltage range	423 ~ 528 V
Nominal frequency	60 Hz
Cosine of Phi	1
Adjustable cosine of phi	Yes. Smax = 40 kVA
THD	< 3 %
Performance	
Maximum efficiency	98.5 %
CEC	98 %
General data	
Cooling system	Forced ventilation
Air flow	3.92 ft ³ /s (400 m ³ /h)
Weight	137.79 lb (62.5 Kg)
Measurements (height x width x depth)	27.8 x 28.9 x 10.55 in (730 x 700 x 250 mm)
Standby current ⁽⁶⁾	< 10 W
Night consumption	< 1 W
Operating temperature	-13 °F ~ 149 °F (-25 °C ~ 65 °C)
Relative humidity (without condensation)	0~95 %
Maximum altitude of the installation	13,123 ft (4000 m)
Protection class	NEMA 4
DC AFCI	Yes
Markings	CE, ETL CE. ETL
EMC and safety regulations	UL1741, FCC Part 15, IEEE C37.90.1, IEEE C37.90.2
Grid connection regulations	IEC 62116, UL1741, IEEE1547, IEEE1547 1 NEC CODE

EN ES

⁽¹⁾ Depending on the type of installation and the geographic location. ⁽²⁾ Never exceed this value. Consider the voltage increase of the panels 'Voc' at low temperatures. ⁽³⁾ The output power will be determined by the voltage and current configuration selected at each input. ⁽⁴⁾ The sum of the currents of the first three strings can not surpass 30 A, or the sum of the three last strings. ⁽⁵⁾ For each °F of increase, the output power is reduced by 1.8 %. ⁽⁶⁾ Consumption from the PV array.

2.9. Configuration parameters

DC inputs	40TL U M480
Range of operating input voltage	200 ~ 1.000 V
Maximum input voltage	1.000 V
Maximum input current (PV array 1 / PV array 2)	40 / 40 A
Maximum short-circuit input	44 / 44 A
Maximum source feedback current	0 A
AC output	40TL U M480
Outgoing power factor	> 0.99
Voltage range (AC) (L-L)	88 ~ 110 % of Vnom
Range of operating frequency	59.3 ~ 60.5 Hz
Number of phases	3
Nominal output voltage (AC)	480 V
Rated output frequency	60 Hz
Maximum outgoing AC current over a line	48 A
Power	40 kW
Maximum (AC) current fault and duration	52.8 A @ 60 ms
Reconnection time	5 minutes
Normal temperature range of use	-13 °F ~ 149 °F (-25 °C ~ 65 °C)
Maximum temperature at nominal power	up to 131 °F (55 °C)
Housing protection	NEMA 4

Values and times of disconnection of the voltage and frequency protections in the interconnection of the unit with the electrical company

	Simulated source		
Levels	Voltage (V)	Frequency (Hz)	Maximum time (s) at 60 Hz before the cessation of the current to the simulated source
А	< 0.50 Vnom	Nominal	0.16
В	$0.50 \text{ Vnom} \le V < 0.88 \text{ Vnom}$	Nominal	2
С	1.10 Vnom \leq V < 1.20 Vnom	Nominal	1
D	1.20 Vnom ≤ V	Nominal	0.16
E	Nominal	f > 60.5	0.16
F	Nominal	f < 59.3	0.16

	Precision of the values and times of disconnection of the voltage and frequency protections
Voltage	±1%
Frequency	± 0.1 Hz
Time	±1%

ΕN

ES

π J

2.10. Description of cable inlets

3. Receipt of the unit and storage

3.1. Reception

Keep the unit in its packaging until immediately before installation.

3.2. Equipment identification

The serial number of the equipment is its unique identifier. You must quote this number in any communication with Ingeteam.

The unit's serial number is marked on the specifications plate.

3.3. Transport damage

If the unit has been damaged during transport, proceed as follows:

- 1. Do not proceed with the installation.
- 2. Notify the distributor immediately within five days of receipt of the unit.

If ultimately you must return the unit to the manufacturer, you must use the original packaging.

3.4. Storage

Failure to follow the instructions in this section may lead to damage to the unit.

Ingeteam accepts no liability for damage resulting from the failure to follow these instructions.

If the unit is not installed immediately after reception, take into account the following points in order to avoid damage:

- The unit must be stored in its original packaging.
- Keep the unit free of dirt (dust, shavings, grease, etc.) and away from rodents.
- Keep it away from water splashes, welding sparks, etc.
- Cover the unit with a breathable protective material in order to prevent condensation due to ambient humidity.
- Units in storage must not be subjected to weather conditions other than those indicated in Section *"2.8. Specifications tables"*.
- It is very important to protect the unit from chemical products which can cause corrosion, as well as from salty atmospheres.
- Do not store the unit outdoors.

3.5. Conservation

In order to permit correct conservation of the units, they must not be removed from their original packaging until it is time to install them.

In case of prolonged storage, the use of dry places avoiding, as far as possible, sharp changes in temperature is recommended.

Deterioration of the packaging (tears, holes, etc.) prevents the units from being kept in optimum conditions before installation. Ingeteam accepts no liability in the case of failing to observe this condition.

ΕN

4. Transporting the equipment

You must protect the unit, during transport, from mechanical knocks, vibrations, water splashes (rain) and any other product or situation which may damage it or alter its behavior. Failure to observe these instructions may lead to loss of warranty on the product, for which Ingeteam is not responsible.

4.1. Transport

Transport using a pallet truck

You must observe at least the following requirements:

- 1. Place the packaged units centered with respect to the forks.
- 2. Try to locate them as close as possible to the part where the forks and the steering unit meet.
- 3. In all cases, observe the instructions in the pallet truck's user manual.

Transport using a forklift truck

You must observe at least the following requirements:

- 1. Place the packaged units centered with respect to the forks.
- 2. Try to locate them as close as possible to the part where the forks and the steering unit meet.
- 3. Ensure that the forks are perfectly level to avoid overturning the unit.
- 4. Observe the instructions in the forklift truck's user manual under all circumstances.

Once the unit has been transported to the place where it is to be located and only when it is to be installed, unpack the unit.

At this time, it can be transported vertically over a short distance without packaging. Follow the guidelines indicated in the following point.

Transport of the unpackaged unit

You must observe at least the following requirements:

- 1. Follow the necessary ergonomic advice for lifting weights.
- 2. Do not release the unit until it is perfectly secured or placed.
- 3. Ask someone else to guide the movements to be made.

4.2. Unpacking

Correct handling of the units is vitally important in order to:

- Prevent damage to the packaging which enables them to be kept in optimum condition from shipping until they are installed.
- Avoid knocks and/or falls which may harm the mechanical characteristics of the units, e.g. cause incorrect closure of doors, loss of IP rating, etc.
- Avoid, as far as possible, vibrations which may cause subsequent malfunction.

If you observe any anomaly, please contact Ingeteam immediately.

To unpack the unit, follow these steps:

1. Open the box from the top.

2. Remove the side, pre-cut tabs, leaving an opening free.

3. Fold the tabs outwards.

4. Insert a bar capable of supporting the unit's weight via the two holes it has. The maximum diameter of the bar can be 1 in.

5. With somebody else's help, push the bar upwards.

Separating the packaging

All the packaging can be delivered to a non-hazardous waste management company. In any event, each part of the packaging may be recycled as follows:

- Plastic (polystyrene, bag and bubble wrap): the appropriate container.
- Cardboard: the appropriate container.

ΕN

ES

5. Preparation for installing the unit

When deciding the location of the unit and planning your installation, you must follow a set of guidelines based on the specifications of the unit. These guidelines are summarized in this chapter.

5.1. Environment

- These units can be installed indoors and outdoors.
- Place the units in a place which is accessible for installation and maintenance work and which permits use of the keyboard and the reading of the front indicator LEDs.
- Avoid corrosive environments that may affect the proper operation of the inverter.
- Never place any object on top of the unit.
- Do not expose the inverters to direct sunlight.
- Do not install the units in inhabited rooms. The inverter produces a slight buzz when in operation.

• If more than one inverter is installed, make sure the hot air extraction of one does not interfere with the correct ventilation of another.

• Keep the following distances free of obstacles.

* If the unit connects via a connections box supplied by Ingeteam, this may be placed in the lower part.

5.2. Environmental conditions

Environmental operating conditions indicated in section *"2.8. Specifications tables"* must be taken into account when choosing the location of the unit.

The surrounding atmosphere must be clean and at temperatures above 104 °F (40 °C), the relative humidity must be between 4% and 50%. Higher percentages of relative humidity up to 95% are tolerated at temperatures below 86 °F (30 °C).

Take into account that moderate condensation may occasionally occur as a consequence of temperature variations. For this reason, apart from the unit's own protection, it is necessary to monitor these units once they have been started up on sites where the conditions described above are not expected to be present.

In the event of condensation, never apply voltage to the unit.

5.3. Supporting Surface and Fastening

These inverters must be installed in accordance with the specifications in the following figure. The permitted positive inclination is between the range of 15 to 90°. The installation with negative inclination (example on the right) is not permitted.

Reserve a solid wall to which to attach the unit. It must be possible to drill the wall and fit suitable wall anchors and self-tapping screws to support the unit's weight.

5.4. Protection of the connection to the electricity grid

It is necessary to install protection elements in the connection between the inverter and the electricity grid.

Thermomagnetic circuit breaker

A thermomagnetic circuit breaker and/or fuse must be installed on the connection between the inverter and the electricity grid.

The following table provides the necessary data for the selection of these devices by the installer.

INGECON SUN 3Play	Maximum inverter current	Rated current for the thermomagnetic circuit breaker
40TL U M480	48 A	63 A

When selecting the protection in an installation you must take into account that its breaking capacity is greater than the short-circuit current of the mains connection point.

You must take into account when correctly selecting the protection that the ambient working temperature influences the maximum current permitted by these protections as indicated by the manufacturer.

5.5. Type of grid

These units must be connected to a grid with a star formation with grounded neutral. The grid neutral must be connected to the unit.

5.6. Cable length

The inverter measures the voltage in its connection terminals. For this reason, the installer must use an AC cable with a sufficiently low impedance so that increasing the voltage in the cable (between the distribution transformers and the unit) does not cause the unit to be disconnected due to high voltage.

5.7. Photovoltaic panels

The stray capacity of the PV array must be lower than 2.4 $\mu\text{F}.$

6. Installing the unit

Before installing the unit, you must remove the packaging, taking special care not to damage the housing.

Check that there is no condensation inside the packaging. If there are signs of condensation, the unit must not be installed until you are sure it is completely dry.

All installation operations must comply with current regulations.

All operations involving moving heavy weights must be carried out by two people.

6.1. General requirements for installation

- The environment of the unit must be appropriate and meet the guidelines described in Chapter "5. *Preparation for installing the unit*". Additionally, the parts used in the rest of the installation must be compatible with the unit and comply with the applicable legislation.
- Ventilation and the space for work must be suitable for maintenance tasks according to the applicable regulations in force.
- The external connection devices must be suitable and sufficiently close as set forth in current regulations.
- The feed cables must be of the appropriate gage for the maximum current.
- You must take special care to ensure that there are no external elements near the air inlets and outlets that obstruct proper cooling of the unit.

6.2. Attaching the unit to the wall

These inverters can be installed together with a connections box. If using the connections box provided by Ingeteam, it may installed annexed to the lower part of the inverter or separated from it.

If you want to install the connections box annexed to the lower part of the inverter, see the installations manual for the connections box to proceed with the installation of the inverterconnections box group, and do not follow the instructions below.

If you want to install the connections box separate from the inverter, follow the instructions below to install the inverter, and see the connections box installation manual for installing the latter.

If you do not want to install a connections box, follow the instructions described below to install the inverter.

These units have a system for securing them to the wall using a plate. The steps for fixing the unit properly are as follows. The weight of the unit must be taken into account.

The top attachment plate for the unit supports the weight. The bottom point fixes the inverter to the wall and prevents vibrations.

1. Remove the fastening plate as shown in the following figure:

- 2. Drill holes in the wall with a suitable bit for the fastening elements to be used to secure the plate to the wall later.
- 3. Fix the plate using fastening elements that are appropriate for the wall onto which it is to be installed. The diameter of the holes of the plate are 0.31 in (8 mm).

a = 8.66 in (220 mm).

4. Suspend the unit from the plate by fitting the slats in the openings on the back of the unit.

5. Mark the bottom fixing points, take down the inverter and drill said holes. Suspend the inverter from the attachment plate again and screw in the two bottom attachments. The diameter of the holes are 0.35 in (9 mm).

6. If you want to install a chain.

Exterior view of the unit

Interior view of the unit

7. Check that the unit properly secured.

Once the unit has been installed correctly, the connection process will begin.

Make the connections in the following order:

- 1. Connection of accessories (optional).
- 2. AC connection.
- 3. DC connection.

ΕN

ES

It is mandatory to follow the order described above. Do not switch on the power until you have made all the connections and closed the unit.

6.3. Opening and closing the housing

To access the inside of the unit, remove the front screws highlighted in gray in the following figure and open the cover as shown below.

After making the different connections explained in the sections below, close the unit before starting it. To close the housing, tighten the aforementioned screws, applying a torque of 53.1 lb.in (6 Nm).

Check that the unit is correctly closed before starting up the unit.

Section *"2.10. Description of cable inlets"* indicates the range of cable diameters valid for each cable grommet.

7. Connection of accessories

Throughout this chapter, the process is explained for connecting the optional accessories in the unit, along with the potential-free relay.

Optionally, a communication system can be installed in order to establish a connection with the unit to monitor and configure it, either locally or remotely, depending on the type of communication chosen and the needs of the installation.

As standard these units have local communication via RS-485. In addition there is the option of establishing connections using other technology types:

- Ethernet (including communication via RS-485, for optional use).
- Ethernet TCP (including communication via RS-485, for optional use).
- GSM/GPRS (including communication via RS-485, for optional use).
- Bluetooth.
- Bluetooth (including communication via RS-485, for optional use).
- Wi-Fi (including communication via RS-485, for optional use).

If communicating via the optional RS-485 in each communication accessory, do not use it simultaneously with the default RS-485 that comes with it.

See the corresponding communication accessories manual for further information.

The wiring must be routed inside the unit via a conduit, which is inserted through a coupling in order to maintain the unit's protection class.

Read carefully before starting the connection process.

7.1. Safety instructions for connecting accessories

Consult section "Important Safety Instructions" and the following instructions before working on the unit.

Make sure there is no voltage present on the unit before starting the connection.

Do not switch on the power to the unit until you have successfully made the rest of the connections and the unit is closed.

Ingeteam accepts no liability for any damages caused by incorrect connection.

Use the personal protective equipment specified in the section *"Personal Protective Equipment (PPE)"*.

ΕN

7.2. Communication via RS-485

To communicate several inverters via RS-485, create a communication bus. In each inverter, make the connection as shown in the following figure. You must install a ferrite rod (supplied by Ingeteam) and going round the communications wiring two times.

The standard recommends installing 120 Ohm end of line resistors at the two ends of the RS-485 wiring. In order to activate the end-of-line in the final inverter of the communication bus, switch the three switches indicated in the figure to ON.

In the communications bus, only the end-of-line resistor of the final inverter of the communication bus should be active (the three switches in ON). For the remaining inverters, the resistance must be deactivated (the three activators for each of the switches must be in OFF).

If communication is via RS-485 with a single inverter, the end-of-line resistor must be enabled.

After making the wiring connections, it will leave the unit via a coupling installed in the precut hole for the accessories.

To ensure the unit's level of protection, follow the permitted diameter range indicated in section "2.10. Description of cable inlets".

7.3. Ethernet or Ethernet TCP communication

The inverter can communicate either via the Ethernet or Ethernet TCP. For installations with more than one inverter, for the first inverter to communicate with the other inverters, they use the RS-485.

7.4. Communication via GSM/GPRS

The inverter can communicate via GSM / GPRS. For installations with more than one inverter, for the first inverter to communicate with the other inverters, they use the RS-485. They can also connect with the first inverter via RS-485.

7.5. Communication via Bluetooth or Bluetooth + RS-485

The inverter can communicate either via Bluetooth or Bluetooth + RS-485. The installations with more than one inverter, for the first inverter to communicate with the other inverters, they use the RS-485, whenever the communication accessory is Bluetooth + RS-485.

7.6. Communication via Wi-Fi

The inverter can communicate via Wi-Fi. For installations with more than one inverter, for the first inverter to communicate with the other inverters, they use the RS-485.

7.7. Connection of accessories for communicating with the wattmeter in the instantaneous self-consumption

To communicate between the inverter and wattmeter in an instantaneous self-consumption system, you need to install a communications card.

For more information on installing this element, see the instantaneous self-consumption manual.

7.8. Connecting the potential-free auxiliary relay

These inverters have a potential-free output which can have several functions:

- Closing the relay in the event of an insulation fault (default option).
- Closing the relay in the event of a grid, voltage or frequency out of range alarm.
- Closing the relay in the event of any alarm in the inverter.
- Closing the relay upon connection of the inverter to the grid.
- Closing the relay if the estimated power of the PV array exceeds the load power. When this mode is selected, the user will also have to enter another configuration parameter: the load power.

To connect the volt-free relay, keep in mind the relay's characteristics:

Potential-free relay's characteristics	
Rated voltage	250 VAC
Nominal current	5 A

The section of cables used must be between 24 AWG and 14 AWG. This device is connected using a conduit with at least two poles.

To ensure the unit's level of protection, follow the permitted diameter range indicated in section "2.10. Description of cable inlets".

After making the wiring connections, it will leave the unit via a coupling installed in the precut hole for the accessories.

8. AC connection.

This chapter explains the requirements and process for wiring the AC wiring to the unit.

Read carefully before starting the connection process.

8.1. Safety instructions for the AC connection

Consult section "Important Safety Instructions" and the following instructions before working on the unit.

Make sure there is no voltage present on the unit before starting the connection.

Do not switch on the power to the unit until you have successfully made the rest of the connections and the unit is closed.

Ingeteam accepts no liability for any damages caused by incorrect connection.

Use the personal protective equipment specified in the section *"Personal Protective Equipment (PPE)"*.

While connecting the inverter, make sure of the proper installation of the cables on the unit's terminals so that parts of accessible wires do not remain live.

8.2. Wiring requirements for the AC connection

To guarantee the safety of persons, for the unit to function correctly and comply with the applicable standards, the unit must be connected to the ground of the installation.

If the inverter and the grid connection point are far enough apart to require the use of cables with a larger gage, an external distribution box should be used close to the inverter to make this connection.

The size of the ground cable will be the responsibility of the installer and must meet applicable regulatory requirements in the installation, with a minimum gage equal to that of phase and neutral.

	AC wiring gage
Minimum gage	In accordance with the current circulating through the conductors
Maximum gage	0 AWG

8.3. AC connection process

The wiring must be routed inside the unit via a conduit, which is inserted through a coupling in order to maintain the unit's protection class.

Respect the installation of L, N and ground as described in this section for correct operation and for the safety of the installation. If the lines L and N are reversed the inverter will not work.

Ingeteam accepts no liability for any consequences of incorrect connection.

- 1. Remove the threaded cap of the input hole and install the coupling using its insulating seal and nut.
- 2. Insert the plastic pipe that routes the cable through the coupling. Make sure the coupling is closed, following the manufacturer's instructions.
- 3. Route the cable to the corresponding terminals using the guides provided in the unit.

4. The connection is made via the PCB terminal. Wire the three phases to the terminals marked *R* (*Vac3*), *S* (*Vac1*), *T* (*Vac2*). Wire the neutral to the terminal marked *N* and wire the ground conductor to the terminal marked as *PE*.

- 5. To make the connection, strip an 20 mm section of the cable. Using a tubular terminal is optional.
- 6. Screw in the terminal with a torque of 48.68 lb.in (5.5 Nm).
- 7. Use a cable tie to secure the cable to the plastic support for this purpose; avoid pulling on the cable.

The AC conduit must remain without voltage while the unit door is open.

Respect the installation of N and PE. Do not interchange with the phases.

Ingeteam accepts no liability for any consequences of incorrect connection.

9. DC connection

This chapter explains the requirements and process for wiring the DC wiring to the unit.

Read carefully before starting the connection process.

9.1. Safety instructions for the DC connection

Consult section "Important Safety Instructions" and the following instructions before working on the unit.

Make sure there is no voltage present on the unit before starting the connection.

Do not switch on the power to the unit until you have successfully made the rest of the connections and the unit is closed.

Ingeteam accepts no liability for any damages caused by incorrect connection.

Use the personal protective equipment specified in the section "Personal Protective Equipment (PPE)".

While connecting the inverter, make sure of the proper installation of the cables on the unit's terminals so that parts of accessible wires do not remain live.

The wiring must be routed inside the unit via a conduit, which is inserted through a coupling in order to maintain the unit's protection class.

9.2. Wiring requirements for the DC connection

Use copper cables.

	DC wiring gage
Minimum gage	In accordance with the current circulating through the conductors
Maximum gage	2 AWG

9.3. DC connection process

- 1. Relative to the installation characteristics, use one or two couplings. For each input, remove the threaded cap of the input hole and install the coupling using its insulating seal and nut.
- 2. Insert the plastic pipe that routes the cable through the coupling. Make sure the coupling is closed, following the manufacturer's instructions.
3. Make the connection with a screw terminal marked with the polarity and numbering of the PV array. These terminals are marked as *XPV1+*, *XPV1-*, *XPV2+* and *XPV2-*. It is important to remember that not all models of the unit have the same rated current for each input.

- 4. To make the connection, strip a 22/32 in (18 mm) section of the cable. Using a tubular terminal is optional.
- 5. Screw in the terminal with a torque of 44.25 lb.in (5 Nm).
- 6. Ensure the connections are firm.

When powering the PV array, follow these steps:

- 7. Only connect string 1 in the external string box of the MPPT1.
- 8. Turn the DC switch to ON.
- 9. Check that at least one of the unit's display LED blinks. Otherwise, check the wiring polarity (in the inverter and in the string box), turn the DC switch OFF and fix it.
- 10. Turn the DC switch to OFF.
- 11. Disconnect the string 1 wiring on the MPPT1 in the string box.
- 12. Repeat steps 7 to 10, with the MPPT2 string 1.
- 13. Connect the remaining stings according to the polarities.

10. Display control

These units incorporate a display and keypad unit to interface with the installer and the user.

This interface allows the display of the main internal parameters and the configuration of the entire system during installation.

Parameters, variables and commands are organized as menus and submenus.

10.1. Keypad and LEDs

The keypad has four keys:

- ESC To exit a parameter, leave a menu and return to the next level up in the structure to not confirm a change or not accept a suggestion.
- With this key you can scroll up the list of parameters or folders within the same level or increase the value of an editable parameter by one base unit.
- Scroll down the list of parameters or folders within the same level or decrease the value of an editable parameter by one base unit.
- OK Its purpose is to accept a parameter as valid, to enter a lower level menu in the structure, to confirm a change or accept a suggestion.

The panel consists of three LEDs, green orange and red:

AB02012IQM01_ - Installation and Operation Manual

10.2. Display

The main display shows different inverter data:

- A. Current date, YYYY-MM-DD.
- B. Power reduction percentage and reason for this reduction*.
- C. Current time, hh:mm.
- D. Voltage and power of the PV array. Both pieces of data are displayed alternately.
- E. Power, voltage and current fed to the public grid.
- F. Wattmeter for instantaneous self-consumption / INGECON EMS Manager. Relative to the selfconsumption or diesel grid mode selected, the wattmeter symbol or INGECON SUN EMS Manager will be displayed. If it flashes, this is due to a communication failure with the device.

Pressing the key OK takes you to the main menu. Pressing the key \sim displays the daily power graph. Pressing \sim displays the energy graph for the last 24 days.

* The reasons for power reduction are as follows:

A: Configuration. The inverter is configured to limit its power.

C: Communications. The inverter is limiting the power after having received a reduction setpoint through communications.

F: Grid frequency. The inverter is limiting the power due to the grid frequency variation.

M: Reserved mode.

- Q: Reactive priority. The inverter is limiting the power due to the injection of reactive power.
- R: Initial connection ramp. The inverter is limiting the power after a reconnection to the grid.

S: Self-consumption mode. The inverter is limiting the power due to functioning in self-consumption mode.

T: Temperature. The inverter is limiting the power due to internal overheating.

V: Grid voltage. The inverter is limiting the power due to the grid voltage variation.

10.3. Menu structure

⁽¹⁾ This option is only available if you have selected *Self-consumption* mode.

⁽²⁾ Menu intended for the installer and password-protected.

10.4. Main menu

		10:17	AM
g			
р			
settings			
data			
	g p settings data	g p settings data	10:17 g p settings data

The main menu contains the following submenus:

Monitoring	This menu includes a series of screens which show the main variables being monitored. The right-hand screen shows the first one as an example.		
Events	This shows the main events such as alarms, warnings and reasons for shutdown.		
Start/Stop	Start up and shutdown the inverter manually.		
Settings	Modify parameters to adapt the unit to different operational conditions.		
Advanced settings	To carry out advanced settings in the inverter. Its access is restricted by the installer password. Is not user-accessible.		
Inverter data	Key information referring to the inverter: serial number, firmware loaded, etc.		

To access the various menus and submenus, the desired option must be highlighted over a black background using the \sim and \sim keys and press the OK key to access it.

The menu *Advanced settings* is password restricted. Access to this menu is only allowed to installers (qualified personnel). The installer password is 3725.

10.5. The unit's first configuration

The first time that the inverter is powered from the PV array, a series of screens are displayed so as to guide the inverter's configuration for proper connection to the electric grid.

Follow the instructions on the display. When selecting the country / regulation, select the country in which the inverter is going to be installed. If the country is not on the list, select *Worldwide* and select the applicable regulation. After selecting the regulation, configure the voltage and frequency.

10.6. Configure the power limit

This option limits, as a percentage of the nominal, the maximum active power that the inverter can inject into the grid.

To configure the power limit access *Main Menu* > *Settings* > *Power settings* and indicate the percentage of maximum active power desired.

10.7. Configuring the country/ regulation

Relative to the applicable regulation at the installation, these inverters must work according to a series of parameters.

To configure the inverter according to the regulation, access *Main Menu* > *Advanced settings* > *Country regulations*. Select the country where the inverter will be installed. If the country is not on the list, select *Worldwide* and select the applicable regulation. After selecting the regulation, configure the voltage and frequency.

10.8. Configuring the Modbus ID

The Modbus ID is the inverter's identification number within the communications bus. These inverters have two RS-485 communication lines, so you can configure the Modbus number for two different buses.

To configure it or the Modbus numbers access Main Menu > Settings > Modbus ID.

The COMM 1 ID is the inverter's ID within the communication bus generated from the RS-485 communication integrated by default into the unit.

41

The COMM 2 ID is the inverter's ID within the communication bus generated from the optional communication accessory installed in the INGECON Connect. If the inverter has self-consumption mode activated like *Self-limited CG EM24* the modification of the COMM 2 ID has no repercussions.

10.9. Configuring the auxiliary relay

These inverters have a potential-free output which can have several functions:

- Closing the relay in the event of an insulation fault (default option).
- Closing the relay in the event of a grid, voltage or frequency out of range alarm.
- Closing the relay in the event of any alarm in the inverter.
- Closing the relay upon connection of the inverter to the grid.
- Closing the relay if the estimated power of the PV array exceeds the load power. When this mode is selected, the user will also have to enter another configuration parameter: the load power.

To configure the auxiliary relay access the Main menu > Settings > Close auxiliary relay.

10.10. Configuring the cosine of phi

By changing the cosine of phi you can regulate the reactive power injected into the grid.

To change the cosine of phi, access *Main Menu* > *Advanced settings* > *cosphi reference*. Beside the cosine value, you can indicate its sign: positive or negative.

The inverter is configured with the selected cosine of phi. If the inverter receives instantaneous setpoints via the communication, the cosine of phi value indicated in these setpoints prevails.

10.11. Configure the inverter to work in self-consumption mode

These inverters can work within a self-consumption system. For this, you must configure the inverter for self-consumption system mode.

Access *Main Menu* > *Advanced settings* > *Self consumption* > *Mode* to select the self-consumption mode.

There are different self-consumption modes: without limitation (MPPT), limited EMS Manager and self-limited CG EM24.

Without limitations (MPPT) Self consumption mode without limits of injecting into the grid.

Limited EMS manager	Limited self-consumption mode via the INGECON EMS Manager. For installations with several inverters.
Self-limited CG EM24	Instantaneous self-consumption mode limited by a wattmeter. For installations with a single inverter.

10.12. Configure the inverter to work in a grid with diesel generator.

If the inverter is part of a diesel generator system, this must be specifically configured. For this configuration access *Main Menu* > *Advanced settings* > *Country regulations* > *Diesel grid*. Once selected *Diesel grid* configure the desired voltage and frequency.

10.13. Place the inverter in operating mode

To start the inverter in operating mode access *Main menu* > *Start/Stop*. This screen display's the inverter's current status and enables, via a keypad OK, changing the status. If the current status is stopped, press OK to change it to operating.

10.14. Place the inverter in stop mode

To place the inverter in stop mode access *Main menu* > *Start/Stop*. This screen display's the inverter's current status and enables, via a keypad OK, changing the status. If the current status is operating, press OK to change it to stopped.

10.15. See the daily power graph

The daily power graph displays the power generated throughout the current day. To see this graph, from the main screen press \frown . Besides the daily power graph it lists the daily energy values (Ed), from the first connection of the day to the time of consultation, total energy (Et) from the first inverter connection^{*} and the instantaneous power (P).

* This historical meter returns to zero if reset to default settings.

10.16. See the energy graph for the last 24 days.

The energy graph of the last 24 days displays the energy generated throughout the last 24 days. To see this graph, from the main screen press \checkmark . Besides the daily power graph of the last 24 days it lists the daily energy values (Ed), from the first connection of the day to the time of consultation, total energy (Et) from the first inverter connection* and the instantaneous power (P).

* This historical meter returns to zero if reset to default settings.

10.17. Monitor the inverter's variables

The monitoring of the inverter variables allows you to see the inverter's operating data in real time.

To view the monitoring, access *Main menu* > *Monitoring* and browse through the different screens via the keypads \land and \checkmark .

The different monitored variables are listed below:

Pac	Inverter AC power, in watts.
Qac	Inverter AC reactive power, in reactive volt-amperes.
Sac	Inverter AC apparent power, in volt-amperes.
PhiCos	Cosine of Phi. Cosine of the phase shift angle between the voltage and current supplied by the inverter.
Vac	AC voltage of the inverter, in volts.
lac	AC current through the inverter, in amperes.
Fac	Frequency generated by the inverter, in hertz.
Pdc	Inverter DC power, in watts.
Vdc	Inverter DC voltage, in volts.
Idc	DC Current, in amperes.
Riso	Insulation resistance of the PV array, in kiloohms.
Energy	Total energy fed through the inverter throughout its useful life.

Time	Total time that the inverter has been feeding the grid.			
Connections	Partial energy fed by the inverter.			
Energy	Partial energy fed by the inverter.			
Time	Partial time that the inverter has been connected to the grid.			
Connections	Partial number of network connections.			
Pac	Inverter AC power, in watts.			
Qac	Inverter AC reactive power, in reactive volt-amperes.			
Sac	Inverter AC apparent power, in volt-amperes.			
PhiCos	 Cosine of Phi. Cosine of the phase shift angle between the voltage and current supplied by the inverter. The cosine of phi can be positive or negative: Positive: the inverter injects positive reactive energy. The current is ahead with respect to the voltage. Negative: the inverter injects negative reactive energy. The current is delayed with respect to the voltage. 			
Vac	AC voltage of the inverter, in volts.			
lac	AC current through the inverter, in amperes.			
Fac	Frequency generated by the inverter, in hertz.			
Pdc	Inverter DC power, in watts.			
Pdc1	String 1 DC power, in watts.			
Pdc2	String 2 DC power, in watts.			
Riso	Insulation resistance of the PV array, in kiloohms.			
Vdc1	DC input voltage of string 1.			
Vdc2	DC input voltage of string 2.			
ldc1	DC input current of string 1.			
ldc2	DC input current of string 2.			
Energy	Total energy fed through the inverter throughout its useful life.			
Time	Total time that the inverter has been feeding the grid.			
Connections	Total number of network connections.			
Energy	Partial energy fed by the inverter.			
Time	Partial time that the inverter has been connected to the grid.			
Connections	Partial number of network connections.			
Pac	Inverter AC power, in watts.			
Qac	Inverter AC reactive power, in reactive volt-amperes.			
Sac	Inverter AC apparent power, in volt-amperes.			
PhiCos	 Cosine of Phi. Cosine of the phase shift angle between the voltage and current supplied by the inverter. The cosine of phi can be positive or negative: Positive: the inverter injects positive reactive energy. The current is ahead with respect to the voltage. Negative: the inverter injects negative reactive energy. The current is delayed with respect to the voltage. 			
Vac1	Phase 1 (S) AC voltage (in volts).			
Vac2	Phase 2 (T) AC voltage (in volts).			
Vac3	Phase 3 (R) AC voltage (in volts).			
Fac	Frequency generated by the inverter, in hertz.			

lac1	AC current of phase 1, in amperes.
lac2	AC current of phase 2, in amperes.
lac3	AC current of phase 3, in amperes.
Pdc	Inverter DC power, in watts.
Pdc1	String 1 DC power, in watts.
Pdc2	String 2 DC power, in watts.
Riso	Insulation resistance of the PV array in kiloohms
Vdc1	DC input voltage of string 1.
Vdc2	DC input voltage of string 2.
Idc1	DC input current of string 1.
Idc2	DC input current of string 2.
String monitoring Total	On this screen we view the monitoring of the string currents in P and P+ units.
Energy	Total energy fed through the inverter throughout its useful life.
Time	Total time that the inverter has been feeding the grid.
Connections	Total number of network connections.
Partial	
Energy	Partial energy fed by the inverter.
Time	Partial time that the inverter has been connected to the grid.
Connections	Partial number of network connections.
Pac	AC power, in watts
Pwatt	Power fed to the public grid in self-consumption mode, in watts.
Ratio	Self-consumption ratio. Displays the consumption percentage of the loads being fed by the

10.18. List of alarms, notifications and reasons for shutdown

During the unit's operation, you can produce alarms, notifications, string warnings and reasons for shutdown.

To view a list access *Main menu* > *Events* and select the type of event to view. The alarms, notifications and string warnings viewed are events in real time. The reasons for stopping are displayed as a history. To see more details about a reason for shutdown, once the list is complete, select it via \sim and \sim and press OK.

You can see a maximum of 25 reasons for shutdown, so once this number is reached, the unit deletes the oldest as it needs space to store new entries. Furthermore, from this menu, you can delete the reason for shutdown history.

10.19. See inverter data

To see the inverter serial number, the firmware versions installed or the configured country / regulation access *Main menu* > *Inverter data*.

1/11/2016	10:17 AM
Inverter data	
N/S	330015290001
FW APP	ABI1000_G
FW BOOT	ABI1006_E
FW LCD APP	ABI1002_D
FW LCD BOOT	ABI1003

N/SInverter serial number.FW APPFirmware applicationFW BOOTFirmware start-up.FW LCD APPFirmware application of the display.FW LCD BOOTFirmware start-up of the display.

10.20. Reset to default settings

If you want to delete all configurations made and accumulated values, thus returning the unit to the default settings, you need to perform a reset.

To perform a factory reset access *Main menu > Advanced settings > Factory reset*. Press OK to start the reset.

10.21. Perform a ventilation test

Occasionally you need to test the proper performance of the unit's fans. These units have the option of performing a ventilation test.

To perform the ventilation test access *Main menu* > *Settings* > *Ventilation Test*. Press OK to start the test. The unit's fans start to turn. Wait until the display shows that the test has finished. If one or several of the fans do not turn, a ventilation fault is displayed. If all ventilators turn, the test's result is positive.

The ventilation test only checks the turning of the fans. A positive ventilation test alone does not indicate that the system's ventilation status is correct. To assure proper performance of the ventilation system, also check that there are no elements obstructing air passage and that the fans are properly installed.

10.22. Change display language

To change display language, access the Main menu > Settings > Language.

10.23. Change date and time

To change the inverter's date and time access *Main menu > Settings > Date and time*.

10.24. Perform a partial delete of accumulated data

These inverters have total and partial meters for energy produced, connected time to grid and number of connections to grid made. This data may be viewed in *Main menu* > *Monitoring*.

If you wish to delete the partial meters, access *Main menu > Settings > Partial delete*.

10.25. Block inverter screen

If you want to block the keypad/screen together to avoid undesired changes access *Main menu* > *Advanced settings* > *Block display* and enable the block. To unblock it, press it in this order and long-press for three seconds ESC \checkmark OK. Re-access *Main menu* > *Advanced settings* > *Block display* and disable block.

Pressing \checkmark you access the configured country / regulations information.

This chapter details the process for the inverter's first connection to the red.

First review the unit.

11.1. Unit inspection

You must check the correct condition of the installation before start-up.

Each installation is different, depending on its characteristics, the country in which it is located or other special conditions which may apply. In all cases, before starting up, it is necessary to ensure that the installation complies with the applicable legislation and regulations and that at least the part to be started up is complete.

11.1.1. Inspection

Before inverter's first start-up, you must carry out a general inspection of the units involving mainly:

Wiring inspection

- Check that the cables are correctly joined to their connectors.
- Check that these cables are in a good condition and that there are no hazards in their environment which damage them, such as sources of intense heat, objects which could cut them or arrangements which put them at risk of impacts or pulling.
- Check the polarities of the DC and AC cables.

Review the unit's fastening

Check that the unit is secured firmly and is not at risk of falling.

11.1.2. Hermetic sealing of the unit

Ensure during installation operations that the unit's level of sealing has not been altered during connection of the unit.

Check the correct adjustment of the connectors and that any cable grommets are well sealed.

Check that a torque of 53.1 lb.in (6 Nm) has been applied to the housing closure screws.

11.2. Process for the first connection to the grid

The first time that the inverter is powered from the PV array, a series of screens are displayed so as to guide the inverter's configuration for proper connection to the electric grid.

1. The first screen indicates the web address from which the inverter's updates can be downloaded. Press OK to go to the next screen.

2. On the second screen you select the language to view the display menus.

	Please, select an option
	English
	Español
	Deutsch
	Italiano
	Français
	Portugês
I	

Highlight the desired language via the keys \nearrow and \checkmark and press OK.

3. From this menu you can select the current date and time. Upon accessing the year flashes. Change with the keys \checkmark and \checkmark . Press OK to go on to select the date. Follow this process to select the day, time, minutes and seconds.

Date and time	
1/½000	4:17:57 AM
Exit	Change

4. Here we select the country or regulation governing the inverter.

Once a general visual inspection, wiring check and sealing check have been carried out, connect power to the unit (DC and AC).

In the first inverter connection a number of screens appear in which you must select, in this order, language, country and applicable standards. After its configuration a feedback screen appears with the options selected.

After this first configuration, select *Main menu > Start/Stop > Start*, thus starting the inverter.

EN ES

12. Firmware update

See the firmware loading manual for details of the update process.

To download the manual, go to the Ingeteam website (www.ingeteam.com) and enter the download zone in the inverter model section. You will find a zipped file containing the manual and the latest firmware version.

Consult the INGECON SUN Manager manual for more information.

The maximum length of the USB cable used to make the connection must not exceed 3 meters.

To maintain the protection rating of the unit after this task you must always replace the cover over the USB connector.

While the inverter remains connected by USB the protection rating of the unit is lower than that specified throughout this document.

13. Shutting down the unit

This section describes the procedure to shut down the unit. If you wish to work inside the unit, you must carry out these instructions in the order shown here to remove the power.

13.1. Process of shutting down the unit

- 1. Proceed to stop mode from the inverter display.
- 2. Remove AC voltage from a means of disconnection outside the unit.
- 3. Remove DC voltage from a means of disconnection outside the unit.
- 4. Wait 5 minutes for the internal capacitances to discharge, the hot parts which may cause burns to cool and the fan blades to stop turning.
- 5. Check that there is no voltage at the DC and AC inputs.
- 6. Signal cut-off point (Vac and Vdc) with a sign reading "*Caution no switching...*". If necessary, rope off the work area.

14. Maintenance

The recommended maintenance tasks must be carried out at least annually, except where otherwise stated.

14.1. Safety conditions

You must consider the set of conditions listed below as minimum requirements.

Before opening the unit, you must remove the power (see Section "13. Shutting down the unit").

An open housing never implies an absence of voltage in the unit, so only qualified personnel may access the unit, following the safe operation guidelines stipulated in this document.

Ingeteam accepts no liability for any damages caused by improper use of the unit. You must propose in advance to Ingeteam any work carried out on any equipment which implies a modification of the original electrical arrangements. These must be studied and approved by Ingeteam.

After completing the maintenance task, replace the front cover and secure it with the bolts supplied.

All the maintenance checks included here must be carried out with the machine stopped, under safe conditions for handling, including those specified by the client for these types of operation.

When carrying out maintenance work on the unit, you must wear the personal protective equipment specified in Section *"Personal Protective Equipment (PPE)"* of this document.

14.2. Condition of the housing

A monthly visual check of the condition of the housing must be carried out, confirming the condition of the seals and the cover, as well as the fixing of the units to their anchor points on the wall. In addition, you must check the condition of the housing for dents or scratches that might degrade the housing or cause it to lose its protection classification. If these types of defect are noticed, the affected parts must be repaired or replaced.

Check that there is no moisture inside the housing. If moisture exists, dry it before making electrical connections.

Check the correct fixing of the housing components to their corresponding anchoring points.

Check the door seal of the unit is in good condition.

14.3. Condition of cables and terminals

You must perform an annual inspection of the cable and terminals conditions:

- Check the correct path of the cables so they do not come into contact with live parts.
- Check the insulation deficiencies and hot spots by checking the color of the insulation and terminals.
- Check that the connections are properly adjusted.

14.4. Cooling system

You must check the unit's cooling system monthly.

- Check the status of exhaust fans, cleaning and replacing them if necessary.
- Clean the radiator fins and the cooling grids.
- Perform a ventilation test to check that the fans turn (see section "10.21. Perform a ventilation test").

15. Troubleshooting

This section provides a guide for troubleshooting problems that may arise in the installation and operation of the inverter.

Troubleshooting for the inverter must be performed by qualified personnel in compliance with the general safety instructions in this manual.

15.1. Alarms. LED messages

Alarm	LED Lighting*	Description	Solution
Vdc1 overvoltage	Orange, 6	Overvoltage in DC input number 1	Check the connections of the PV array, ensuring the
Vdc2 overvoltage	Orange, 6	Overvoltage in DC input number 2	and that the maximum voltage of the inverter has not been exceeded.
Idc1 overcurrent	Red, 1	Overcurrent in DC input number 1	Check the installation in the DC part.
Idc2 overcurrent	Red, 1	Overcurrent in DC input number 2	If the error persists, contact the Technical Service.
Overvoltage Vbus	Red, 2	Overvoltage in the bus	Check the connections of the PV array, ensuring the series-parallel configuration of the panels is correct, and that the maximum voltage of the inverter has not been exceeded.
Inst. Overcurr. Vac	Orange, 2	Instantaneous overvoltage at the AC output	Check the connections of the AC side. Check that the voltage of the electricity grid is within range.
Vac out of range	Orange, 2	AC output voltage out of the defined range	Check that the AC varistors are not damaged.
Inst. Overcurr. lac	Red, 1	Instantaneous overcurrent at the AC output	Check the installation in the AC part.
lac out of range	Red, 1	AC output current out of the defined range	If the error persists, contact the Technical Service.
Fac out of range	Orange, 3	AC grid frequency out of the defined range	Check the connections of the AC side. Check that the frequency of the electricity grid is within range.
DC/DC pwm fault	Red, 3	Firmware fault in the DC/DC phase	
DC/AC pwm fault	Red, 3	Firmware fault in the DC/AC conversion phase	Check the installation in the DC and AC part.
DC/DC hw fault	Red, 3	Hardware fault in the DC/DC phase	If the error persists, contact the Technical Service.
DC/AC hw fault	Red, 3	HW fault in the DC/AC conversion phase	
Temperature alarm	Orange, 4	Temperature out of operating range	This may be normal if the room temperature exceeds the maximum of the unit. Check the functioning of the fans. Protect the inverter from direct exposure to sunlight. Cool the room where the inverter is installed.
Fatal error	Red, constant	Fatal error	Disconnect the DC and AC inverter. Wait until the LEDs go off and re-connect. If the problem persists, contact the Technical Service.
Manual shutdown	Orange, constant	The inverter has been manually stopped.	Start the inverter by means of the display.
Hardware error	Red, 1	The inverter displays a hardware error	Disconnect the DC and AC inverter. Wait until the LEDs go off and re-connect. If the problem persists, contact the Technical Service.
Residual current	Orange, 5	Residual current out of range	Check that there are no insulation faults in the PV array. Check that the stray capacity of the PV array does not exceed the maximum permitted.
FW update	Orange, constant	Inverter shutdown due to firmware load	Normal shutdown due to inverter firmware update.

EN ES

Alarm	LED Lighting*	Description	Solution
Grid consumption	Orange, 1	Grid consumption power out of the permitted range	This may be due to a law irrediance level. Otherwise
Low pow. PV conn.	Orange, 1	The generated power in the PV array is not sufficient to connect to the AC grid	check the PV array.
Pow. supply fault	Red, 1	Fault in power supply to the electronic circuit boards	Check the correct connection of the DC cables. Open the unit and check the correct connection of the control board.
Idc grid injection	Red, 3	DC current fed to the grid out of the permitted range	Check the installation in the AC part. If the error persists, contact the Technical Service.
Config. change	Red, 1	Inverter setting change	Normal shut down due to a change in the inverter setting.
Isolation alarm	Orange, 5	Insulation resistance out of range	Check, on the display, that the PV array grounding is correctly configured. Search for an insulation fault in the PV array. If one of the poles is grounded, check the grounding fuse.
Satur. alarm lac	n lac Orange, 5 AC current saturation	Check the installation in the AC part.	
		If the error persists, contact the Techni	If the error persists, contact the Technical Service.
Low Vdc	Orange, 1	Low DC voltage	This may be due to a low irradiance level. Otherwise, check the PV array.
Electric arc detection	Orange, 8	Electric arc detected in the DC input	Check the condition of the installation connected to the unit's DC input.

* The number of flashes is indicated.

Warnings

			1
Alarm	LED Lighting*	Description	Solution
Blocked fan	Orange, 7	Possible fan blockage	Check the condition of the fan and that there are no elements that prevent it functioning properly.
High temperature	Orange, 7	Power regulation due to temperature above operating temperature	Check the room temperature does not exceed the specified maximum temperature and the inverter is not exposed to direct sunlight. Also check the functioning of the fans.
Low temperature	Orange, 7	Temperature below operating temperature	Check the room temperature is not below the specified minimum temperature.
High Vdc	Orange, 7	High DC input voltage	Check the connections of the PV array, ensuring the series-parallel configuration of the panels is correct, and that the maximum voltage of the MPP has not been exceeded.
String kit comm.	Not applicable	No applicable	Not applicable
Self-cons. commun.	Orange, 7	Communication fault with the self- consumption devices (wattmeter or INGECON EMS Manager)	Check the connection of the different elements. If the error persists, contact the Technical Service.
Surge arrester error	Orange, 7	Fault in DC arresters	Check the condition of the surge arresters and replace as required.

* The number of flashes is indicated.

16. Waste handling

These units use components that are harmful to the environment (electronic cards, batteries or cells, etc.).

At the end of the unit's life, the waste must be correctly processed by an authorized hazardous waste management company.

Ingeteam, in accordance with its policy of respect for the environment, will inform the authorized manager, via this Section, of the location of components to be decontaminated.

The elements within the unit that must be handled individually are:

- 1. Electrolytic condensers or condensers containing PCB.
- 2. Printed circuit board cards.
- 3. Liquid crystal displays.

FΝ

Condiciones importantes de seguridad

A lo largo de este apartado se detallan los avisos de seguridad así como el Equipo de Protección Individual.

Condiciones de seguridad

Avisos generales

Las operaciones detalladas en este manual solamente pueden ser realizadas por personal cualificado.

La condición de personal cualificado a la que se refiere este manual, será como mínimo aquella que satisfaga todas las normas, reglamentos y leyes en materia de seguridad aplicables a los trabajos de instalación y operación de este equipo.

Se recuerda que es obligatorio cumplir toda la legislación aplicable en materia de seguridad para el trabajo eléctrico. Existe peligro de descarga eléctrica.

El cumplimiento de las instrucciones de seguridad expuestas en este manual o de la legislación sugerida no exime del cumplimiento de otras normas específicas de la instalación, el lugar, el país u otras circunstancias que afecten al inversor.

La apertura de la envolvente no implica la ausencia de tensión en su interior.

Existe peligro de descarga eléctrica incluso después de desconectar todas las fuentes de energía del sistema.

Solamente podrá abrirla personal cualificado siguiendo las instrucciones de este manual.

Es obligatorio leer y entender el manual por completo antes de comenzar a manipular, instalar u operar el equipo.

Realizar todas las maniobras y manipulaciones sin tensión.

Como medida mínima de seguridad en esta operación, se deberán observar las llamadas **5 reglas de** oro:

- 1. Desconectar.
- 2. Prevenir cualquier posible realimentación.
- 3. Verificar la ausencia de tensión.
- 4. Poner a tierra y en cortocircuito.
- 5. Proteger frente a elementos próximos en tensión, en su caso, y establecer una señalización de seguridad para delimitar la zona de trabajo.

Hasta que no se hayan completado las cinco etapas, no podrá autorizarse el trabajo sin tensión y se considerará trabajo en tensión en la parte afectada.

Es obligatorio para comprobar ausencia de tensión utilizar elementos de medida de categoría III-1000 Voltios.

Ingeteam no se responsabiliza de los daños que pudieran causarse por una utilización inadecuada de los equipos. Toda intervención que se realice sobre cualquiera de estos equipos que suponga un cambio en las disposiciones eléctricas respecto a las originales deberán ser previamente propuestas a Ingeteam. Éstas deberán ser estudiadas y aprobadas por Ingeteam.

Peligros potenciales para las personas

El equipo puede permanecer cargado después de desconectar las fuentes de energía renovable.

Seguir cuidadosamente los pasos para quitar tensión obligados en el manual.

Seguir siempre las indicaciones del manual para mover y emplazar el equipo.

El peso de este equipo puede producir lesiones si no se manipula correctamente.

PELIGRO: alta temperatura.

El caudal de aire de salida puede alcanzar temperaturas altas que dañen a las personas expuestas.

Peligros potenciales para el equipo

El equipo necesita un flujo de aire libre de impurezas mientras está funcionando.

Mantener las entradas sin obstáculos es imprescindible para que este flujo de aire refrigere el equipo.

Después de toda manipulación debidamente autorizada, comprobar que el inversor está preparado para empezar a funcionar. Solamente después se puede proceder a conectarlo siguiendo las instrucciones del manual.

No tocar tarjetas ni componentes electrónicos. Los componentes más sensibles pueden dañarse o destruirse por la electricidad estática.

No desconectar o conectar ningún terminal mientras el equipo está funcionando. Desconectar y comprobar la ausencia de tensión antes.

Equipo de Protección Individual (EPI)

Siempre que se trabaje en el equipo usar, como mínimo, el siguiente equipamiento de seguridad recomendado por Ingeteam.

Denominación	Explicación
Calzado de seguridad	Conforme a la norma ANSI Z41.1-1991
Casco con pantalla facial	Conforme a la norma <i>ANSI Z89.1-2014</i> , siempre que existan elementos con tensión directamente accesibles
Ropa de trabajo	Ceñida al cuerpo, no inflamable, 100% de algodón
Guantes dieléctricos	Conforme a la norma ASTM D 120-87

Las herramientas y/o equipos empleados en trabajos en tensión deben poseer, al menos, aislamiento de categoría III-1000 Voltios.

En caso de que normativas propias del lugar exijan otro tipo de equipo de protección individual, el equipo recomendado por Ingeteam se deberá completar adecuadamente.

ΕN

Simbología en los inversores

ABO2012IQM01_ - Manual de instalación y uso

Contenidos

Condiciones importantes de seguridad Condiciones de seguridad Equipo de Protección Individual (EPI)	55 55 56
Contenidos	58
 Información sobre este manual 1.1. Campo de aplicación y nomenclatura 1.2. Destinatarios	60 60 60 60
 Descripción del equipo	61 61 61 62 62 62 62 62 63 64 65
 Recepción del equipo y almacenamiento	66 66 66 66 66 66
 4. Transporte del equipo	67 67 67
 5. Preparación para la instalación del equipo	70 70 71 71 72 72 72 72
 6. Instalación del equipo 6.1. Requerimientos generales de instalación	73 73 73 76
 7. Conexión de accesorios	77 77 78 79 80 81 82 83 83
 8. Conexión de AC 8.1. Indicaciones de seguridad para la conexión de AC	84 84 84 84
9. Conexión de DC	86

9.1 Indicaciones de seguridad para la conevión de DC	86
9.2. Requisitos del cableado para la conexión de DC	. 86
9.3. Proceso de conexión de DC	86
10 Maneio del display	88
10.1. Teclado y LED	. 88
10.2. Display	89
10.3. Organización de menús	90
10.4. Menú principal	91
10.5. Realizar la primera configuración del equipo	91
10.6. Configurar al himitación de potencia	91
10.7. Configurar el país / normativa	91
10.9. Configurar el relé auxiliar	. 92
10.10. Configurar el coseno de phi	. 92
10.11. Configurar el inversor para trabajar en modo autoconsumo	92
10.12. Configurar el inversor para trabajar en una red con generación diésel	92
10.13. Poner el inversor en estado de funcionamiento	92
10.14. Poner el inversor en estado de paro	92
10.15. Consultar la gráfica de potencia diaria	93
10.10. Consultar la granca de energias de los ultimos 24 días	93
10.18. Visualizar alarmas, avisos y motivos de paro	. 95
10.19. Consultar datos del inversor	95
10.20. Realizar un reset a estado de fábrica	96
10.21. Realizar un test de ventilación	96
10.22. Cambiar el idioma del display	96
10.23. Cambiar la fecha y hora	96
10.24. Realizar un portato parcial de latos acumulados	96 96
	50
11. Primera conexión a red	97
11.1. Kevision del equipo	97
11.1.1. Inspeccion 11.1.2. Cierre hermético del equipo	97 97
11.2. Proceso para la primera conexión a red	97
12 Actualización de firmware	99
	100
13. Desconexión del equipo	100
13.1. Proceso de desconexion del equipo	100
14. Mantenimiento	101
14.1. Condiciones de seguridad	101
14.2. Estado de la envolvente	101
14.3. Estado de los cables y terminales	101
	101
15. Solución de problemas	102
15.1. Alarmas. Indicaciones de los LED	102
16. Tratamiento de residuos	104

1. Información sobre este manual

El propósito de este manual es describir los equipos INGECON SUN 3Play TL U M y dar la información adecuada para su correcta recepción, instalación, puesta en marcha, mantenimiento y operación.

1.1. Campo de aplicación y nomenclatura

Este manual es válido para los siguientes equipos:

Nombre completo	Abreviatura
INGECON SUN 40TL U M480	40TL U M480

En este documento se nombrarán a los diferentes modelos tanto por su nombre completo como por su abreviatura. Asimismo, se referirá de manera genérica a cualquiera de los modelos de la familia de INGECON SUN 3Play TL U M con los términos *equipo* o *inversor*.

1.2. Destinatarios

El presente documento está orientado a personal cualificado.

La condición de personal cualificado a la que se refiere este manual, será como mínimo aquella que satisfaga todas las normas, reglamentos y leyes en materia de seguridad aplicables a los trabajos de instalación y operación de este equipo.

La responsabilidad de designar al personal cualificado siempre recaerá sobre la empresa a la que pertenezca este personal, debiendo decidir qué trabajador es apto o no para realizar uno u otro trabajo para preservar su seguridad a la vez que se cumple la legislación de seguridad en el trabajo.

Dichas empresas son responsables de proporcionar una adecuada formación en equipos eléctricos a su personal, y a familiarizarlo con el contenido de este manual.

1.3. Simbología

A lo largo de este manual se utilizarán diferentes símbolos con el fin de remarcar y resaltar ciertos textos. A continuación se explican los significados generales de estos.

Atención general.

Riesgo eléctrico.

Superficie caliente.

Información general.

Leer el apartado indicado de este manual.

Prohibición.

2. Descripción del equipo

2.1. Visión general

La finalidad básica de un inversor es transformar la corriente continua generada por el campo fotovoltaico en corriente alterna para su inyección a la red eléctrica.

La estructura de potencia de estos inversores consigue un alto rendimiento con una curva plana, minimizando coste y peso del inversor.

El inversor incluye de serie comunicación vía RS-485, lector de tarjetas SD para la actualización de firmware y un relé libre de potencial para señalización.

2.2. Accesorios opcionales

Estos equipos pueden incorporar los siguientes accesorios:

- Descargadores de DC.
- Accesorios de comunicación.
- Tarjeta de entradas digitales.
- Kit de autoconsumo.
- Caja de conexiones.

Descargadores de DC

De forma opcional estos equipos pueden incluir dos descargadores de DC, uno por campo fotovoltaico.

Accesorios de comunicación

Estos equipos disponen de serie de comunicación local vía RS-485. Adicionalmente se pueden establecer conexiones mediante otras tecnologías opcionales:

- Ethernet (incluida comunicación vía RS-485, de uso opcional).
- Ethernet TCP (incluida comunicación vía RS-485, de uso opcional).
- GSM/GPRS (incluida comunicación vía RS-485, de uso opcional).
- Bluetooth.
- Bluetooth (incluida comunicación vía RS-485, de uso opcional).
- Wi-Fi (incluida comunicación vía RS-485, de uso opcional).

A lo largo de este manual se indican las instrucciones para la instalación de los accesorios de comunicación. Para ampliar la información sobre el funcionamiento de los mismos consultar el manual de accesorios de comunicación correspondiente.

Tarjeta de entradas digitales

En determinados países es necesaria esta tarjeta para cumplir su normativa.

Kit de autoconsumo

Estos inversores son compatibles con todas las opciones de autoconsumo ofrecidas por Ingeteam.

Caja de conexiones

Ingeteam dispone de una caja de conexiones, la cual está recomendada para estos inversores. Asimismo es posible utilizar una caja de conexiones de un fabricante externo.

En el caso de utilizar una caja de conexiones de otro fabricante, es responsabilidad del instalador asegurar que ésta cumple toda la legislación que le sea aplicable, y, particularmente, aquellos requisitos necesarios para actuar junto a un inversor fotovoltaico según *UL1741*.

2.3. Seguridad eléctrica

A continuación se dan a conocer magnitudes de diseño interesantes para la seguridad eléctrica.

FΝ

2.4. Grado de contaminación

Los equipos cumplen con el grado de contaminación 2 requerido para este tipo de inversores.

2.5. Contaminación acústica

El funcionamiento de este equipo genera un ligero zumbido. No ubicarlos en una estancia habitada, o sobre soportes ligeros que puedan amplificar ese zumbido. La superficie de montaje debe ser firme y adecuada al peso del equipo.

2.6. Esquema eléctrico del sistema

• Opcional.

• Caja de conexiones (opcional).

2.7. Configuraciones de red

La configuración de red a utilizar en estos equipos será la siguiente.

480 V WYE

2.8. Tablas de características

	40TL U M480
Entrada DC	
Rango de potencia campo FV recomendado (1)	24.7 ~ 32.2 kWp
Tensión máxima de entrada (2)	1000 V
Rango de tensión MPP1 (3)	200 ~ 820 V
Rango de tensión MPP2 (3)	200 ~ 820 V
Rango de tensión de operación	200 ~ 1000 V
Tensión mínima para Pnom	520 V
Corriente de cortocircuito máxima (entrada 1 / entrada 2)	44 / 44 A
Máxima retroalimentación de corriente hacia el campo fotovoltaico	0 A rms
MPPT	2
Número de strings (entrada 1 / entrada 2)	1 / 1
Corriente máxima de entrada (entrada 1 / entrada 2)	40 / 40 A
Corriente máxima de entrada por string (4)	12 A
Salida AC	
Potencia nominal	40 kW
Potencia máxima permanente	40 kW
Máx. temperatura para potencia nominal (5)	113 °F (45 °C)
Corriente máxima	48 A
Corriente máxima transitoria	48 A
Máxima corriente de fallo de salida	52.8 A @ 60 ms
Máxima protección de sobrecorriente de salida	52.8 A rms
Tensión nominal	480 V
Rango de tensión	423 ~ 528 V
Frecuencia nominal	60 Hz
Coseno Phi	1
Coseno Phi aiustable	Sí. Smax = 40 kVA
THD	< 3 %
Rendimiento	
Eficiencia máxima	98.5 %
CEC.	98 %
• · · · ·	00 //
Datos generales	
Sistema de refrigeración	Ventilación forzada
Flujo de aire	3.92 ft ³ /s (400 m ³ /h)
Peso	137.79 lb (62.5 Kg)
Medidas (alto x ancho x fondo)	27.8 x 28.9 x 10.55 in (730 x 700 x 250 mm)
Consumo en stand-by (6)	< 10 W
Consumo nocturno	< 1 W
Temperatura de funcionamiento	-13 °F ~ 149 °F (-25 °C ~ 65 °C)
Humedad relativa (sin condensación)	0 ~ 95 %
Altitud máxima de la instalación	13,123 ft (4000 m)
Grado de protección	NEMA 4
DC AFCI	Sí
Marcado	CE, ETL CE, ETL
Normativa EMC y de seguridad	UL1741, FCC Part 15, IEEE C37.90.1, IEEE C37.90.2
Normativa de conexión a red	IEC 62116, UL1741, IEEE1547, IEEE1547.1, NEC CODE

⁽¹⁾ Dependiendo del tipo de instalación y de la ubicación geográfica. ⁽²⁾ No superar en ningún caso. Considerar el aumento de tensión de los paneles 'Voc' a bajas temperaturas. ⁽³⁾ La potencia de salida quedará condicionada por la configuración de tensión y corriente elegida en cada entrada. ⁽⁴⁾ La suma de las corrientes de los tres primeros strings no podrá superar los 30 A, así como la suma de los tres últimos strings. ⁽⁵⁾ Por cada °F de incremento, la potencia de salida se reducirá un 1,8 %. ⁽⁶⁾ Consumo desde el campo fotovoltaico. EN ES

2.9. Parámetros de configuración

40TL U M480 200 ~ 1,000 V 1,000 V 40 / 40 A 44 / 44 A 0 A 40TL U M480
200 ~ 1,000 V 1,000 V 40 / 40 A 44 / 44 A 0 A 40TL 11 M480
1,000 V 40 / 40 A 44 / 44 A 0 A 40TL 11 M480
40 / 40 A 44 / 44 A 0 A 40TL 11 M480
44 / 44 A 0 A 40TL 11 M480
0 A 40TL 11 M480
40TL II M480
40TL II M480
> 0.99
88 ~ 110 % de Vnom
59.3 ~ 60.5 Hz
3
480 V
60 Hz
48 A
40 kW
52.8 A @ 60 ms
5 minutos
-13 °F ~ 149 °F (-25 °C ~ 65 °C)
hasta 131 °F (55 °C)
NEMA 4

Valores y tiempos de desconexión de las protecciones de tensión y frecuencia en la interconexión del equipo con la compañía eléctrica

	Fuente simulada		
Niveles	Tensión (V)	Frecuencia (Hz)	Tiempo máximo (s) a 60 Hz antes del cese de corriente a la fuente simulada
A	< 0.50 Vnom	Nominal	0.16
В	0.50 Vnom \leq V < 0.88 Vnom	Nominal	2
С	1.10 Vnom \leq V $<$ 1.20 Vnom	Nominal	1
D	1.20 Vnom ≤ V	Nominal	0.16
E	Nominal	f > 60.5	0.16
F	Nominal	f < 59.3	0.16

Precisión de los valores y tiempos de desconexión de las protecciones de tensión y frecuencia		
Tensión	±1%	
Frecuencia	± 0.1 Hz	
Tiempo	±1%	

ΕN

ES

2.10. Descripción de accesos de cableado

3. Recepción del equipo y almacenamiento 3.1. Recepción

Mantener el embalaje colocado hasta inmediatamente antes de su instalación.

3.2. Identificación del equipo

El número de serie del equipo lo identifica de forma inequívoca. En cualquier comunicación con Ingeteam se debe hacer referencia a este número.

El número de serie del equipo viene reflejado en la placa de características.

3.3. Daños en el transporte

Si durante el transporte el equipo ha sufrido daños actuar en el siguiente orden:

- 1. No proceder a la instalación.
- 2. Notificar este hecho inmediatamente al distribuidor dentro de los cinco días posteriores a la recepción del equipo.

Si finalmente fuese necesario devolver el equipo al fabricante, se deberá usar el mismo embalaje en el que se recibió.

3.4. Almacenamiento

El incumplimiento de las instrucciones dadas en esta sección puede causar daños en el equipo.

Ingeteam no asume ninguna responsabilidad por daños derivados del incumplimiento de estas instrucciones.

Si el equipo no es instalado inmediatamente después de su recepción, se deberán tener en cuenta los siguientes puntos con el fin de evitar su deterioro:

- El equipo se debe almacenar en su embalaje original.
- Mantener el equipo libre de suciedad (polvo, virutas, grasa, etc.), así como de roedores.
- Evitar que reciba proyecciones de agua, chispas de soldaduras, etc.
- Cubrir el equipo con un material protector transpirable con el fin de evitar condensación debida a la humedad ambiental.
- Los equipos almacenados no deberán estar sometidos a condiciones climáticas diferentes a las indicadas en el apartado *"2.8. Tablas de características"*.
- Es muy importante proteger el equipo frente a productos químicos que puedan producir corrosión, así como de ambientes salinos.
- No almacenar el equipo a la intemperie.

3.5. Conservación

Con el fin de permitir una correcta conservación de los equipos, no debe retirarse el embalaje original hasta el mismo momento de su instalación.

Se recomienda, en caso de almacenamiento prolongado, que este se realice en lugares secos, evitando, en lo posible, cambios bruscos de temperatura.

El deterioro del embalaje (cortes, agujeros, etc.) hace que los equipos no se mantengan en óptimas condiciones antes de su instalación. Ingeteam no se hace responsable en caso de incumplirse esta condición.

ΕN

4. Transporte del equipo

Se deberá proteger el equipo durante su transporte de golpes mecánicos, vibraciones, proyecciones de agua (Iluvia) y cualquier otro producto o situación que pueda dañar o alterar su comportamiento. La no observancia de estas instrucciones puede causar la pérdida de la garantía en el producto, de la cual Ingeteam no es responsable.

4.1. Transporte

Transporte mediante transpaleta

Se deberán observar al menos las siguientes prescripciones:

- 1. Depositar los equipos embalados centrados respecto a las uñas.
- 2. Procurar colocarlos lo más cerca de la unión de las uñas con el tirador.
- 3. En cualquier caso, respetar el manual de utilización de la transpaleta.

Transporte mediante carretilla elevadora

Se deberán observar al menos las siguientes prescripciones:

- 1. Depositar los equipos embalados centrados respecto a las uñas.
- 2. Procurar colocarlos lo más cerca de la unión de las uñas con el tirador.
- 3. Asegurarse que las pinzas están perfectamente niveladas para evitar posibles vuelcos del equipo.
- 4. En cualquier caso, respetar el manual de utilización de la carretilla.

Una vez que el equipo se ha transportado al lugar donde se va a ubicar, y solamente cuando se vaya a instalar, se desembalará el equipo.

En ese momento se puede transportar verticalmente una distancia corta sin el embalaje. Se deberán seguir las pautas indicadas en el siguiente punto.

Transporte del equipo con el equipo desembalado

Se deberán observar al menos las siguientes prescripciones:

- 1. Seguir los consejos ergonómicos necesarios para levantar pesos.
- 2. No soltar el equipo hasta que esté perfectamente fijado o depositado.
- 3. Pedir que otra persona guíe los movimientos a realizar.

4.2. Desembalaje

Es de vital importancia la correcta manipulación de los equipos con el fin de:

- No deteriorar el embalaje que permite mantener estos en óptimas condiciones desde su expedición hasta el momento de ser instalados.
- Evitar golpes y/o caídas de los equipos que pudieran deteriorar las características mecánicas de los mismos; por ejemplo, cierre incorrecto de puertas, pérdida de grado de protección, etc.
- Evitar, en la medida de lo posible, las vibraciones que puedan provocar un mal funcionamiento posterior.

En caso de observar alguna anomalía se deberá contactar inmediatamente con Ingeteam.

Para desembalar el equipo seguir los siguientes pasos:

1. Abrir la caja por la parte superior.

2. Retirar las pestañas laterales que aparecen precortadas, dejando así libre una abertura.

3. Doblar las pestañas hacia el exterior.

4. Introducir una barra capaz de soportar el peso del equipo a través de los dos orificios de los que dispone el mismo. El diámetro máximo de la barra será de 1 in.

5. Con la ayuda de otra persona, tirar de la barra hacia arriba.

Segregación del embalaje

Todo el embalaje se puede entregar a un gestor autorizado de residuos no peligrosos. En cualquier caso, el destino de cada parte del embalaje será:

- Plástico (poliestireno, bolsa y papel burbuja): contenedor correspondiente.
- Cartón: contenedor correspondiente.

ΕN

5. Preparación para la instalación del equipo

A la hora de decidir la ubicación del equipo y planificar su instalación, se deberán seguir una serie de pautas derivadas de las características del mismo. En este capítulo se resumen estas pautas.

5.1. Entorno

- Estos equipos pueden ser instalados en interiores y exteriores.
- Colocar los equipos en un lugar accesible a los trabajos de instalación y mantenimiento, y que permita el manejo del teclado y la lectura de los LED indicadores frontales.
- Evitar ambientes corrosivos que puedan afectar al correcto funcionamiento del inversor.
- Queda terminantemente prohibido dejar cualquier objeto sobre el equipo.
- Los inversores no deben exponerse a la irradiación solar directa.
- No instalar los equipos en estancias habitadas. El inversor en funcionamiento emite un ligero zumbido.

• En caso de instalar más de un inversor asegurar que la extracción de aire caliente de unos no interfiera en la correcta ventilación de otros.

FΝ

Mantener libre de obstáculos las siguientes distancias.

* Si el equipo se conecta mediante caja de conexiones provista por Ingeteam ésta podrá colocarse en la parte inferior.

5.2. Condiciones medioambientales

Se deberán tener en cuenta las condiciones ambientales de operación del equipo indicadas en el apartado *"2.8. Tablas de características"* para elegir su ubicación.

El aire del entorno debe estar limpio y la humedad relativa, a más de 104 °F (40 °C), debe estar en el rango entre el 4% y el 50%. Mayores porcentajes de humedad relativa hasta el 95% son tolerables a temperaturas por debajo de 86 °F (30 °C).

Conviene tener en cuenta que, ocasionalmente, podría producirse una condensación moderada como consecuencia de las variaciones de temperatura. Por esta razón, y al margen de la propia protección del equipo, se hace necesaria una vigilancia de estos equipos, una vez puestos en marcha en aquellos emplazamientos en los que se sospeche no vayan a darse las condiciones anteriormente descritas.

Con condensación, no aplicar nunca tensión al equipo.

5.3. Superficie de apoyo y anclaje

Estos inversores deben instalarse según las especificaciones de la siguiente figura. La inclinación positiva permitida tiene un rango de 15 a 90°. La instalación con inclinación negativa (ejemplo de la derecha) no está permitida.

Se deberá reservar una pared sólida para amarrar el equipo. La pared deberá poderse taladrar e incorporar tacos y tirafondos aptos para soportar el peso del equipo.

5.4. Protección de la conexión a la red eléctrica

Es necesaria la instalación de elementos de protección en la conexión del inversor a la red eléctrica.

Interruptor magnetotérmico

Es necesaria la instalación de un interruptor magnetotérmico y/o fusible en la conexión del inversor a la red eléctrica.

La siguiente tabla aporta los datos necesarios para la selección de ese dispositivo por el instalador.

INGECON SUN 3Play	Corriente máxima del inversor	Corriente nominal del magnetotérmico
40TL U M480	48 A	63 A

A la hora de seleccionar la protección en una instalación se deberá tener en cuenta que el poder de corte de la misma sea superior a la corriente de cortocircuito del punto de conexión a la red.

Se debe tener en cuenta en la correcta elección de la protección que la temperatura ambiente de trabajo influye en la corriente máxima admitida por dichas protecciones según indique el fabricante.

5.5. Tipo de red

Estos equipos deben conectarse a una red en estrella con neutro aterrado. El neutro de la red debe conectarse al equipo.

5.6. Longitud del cableado

El inversor mide la tensión en sus bornes de conexión, por esta razón el instalador deberá emplear un cable AC con una impedancia suficientemente baja para que el aumento de tensión en el cable (entre el transformador de distribución y el equipo) no provoque la desconexión del equipo por tensión alta.

5.7. Paneles fotovoltaicos

La capacidad parásita del campo fotovoltaico debe ser inferior a 2,4 µF.
6. Instalación del equipo

Antes de proceder a la instalación del equipo, deberá retirarse el embalaje teniendo especial cuidado de que no se dañe la envolvente.

Deberá cerciorarse de la inexistencia de condensación en el interior del embalaje. Si existieran signos de condensación, no se deberá instalar el equipo hasta asegurarse que está completamente seco.

Todas las operaciones de instalación deben mantener observancia con el reglamento vigente.

Todas las operaciones que impliquen movimiento de pesos elevados se deberán llevar a cabo entre dos personas.

6.1. Requerimientos generales de instalación

- El entorno del equipo deberá ser el adecuado, satisfaciendo las pautas descritas en el capítulo "5. *Preparación para la instalación del equipo*". Además, los elementos empleados en el resto de la instalación deberán ser compatibles con el equipo y con el cumplimiento de la legislación aplicable.
- La ventilación y el espacio de trabajo deberán ser los adecuados para las labores de mantenimiento según reglamento aplicable vigente.
- Los dispositivos exteriores de conexión deberán ser adecuados y estarán lo suficientemente cerca según se establece en el reglamento vigente.
- Los cables de acometida deberán tener la sección adecuada a la intensidad máxima.
- Se tendrá especial cuidado para que no existan elementos exteriores próximos a las entradas y salidas de aire que impidan la correcta refrigeración del equipo.

6.2. Fijación del equipo en pared

Estos inversores pueden instalarse junto a una caja de conexiones. En caso de utilizar la caja de conexiones facilitada por Ingeteam, ésta puede ser instalada anexa a la parte inferior del inversor o separada de éste.

En caso de querer instalar la caja de conexiones anexa a la parte inferior del inversor consultar el manual de instalación de la caja de conexiones para proceder a la instalación del conjunto inversorcaja de conexiones, desatendiendo las instrucciones de instalación que aparecen a continuación.

En caso de querer instalar la caja de conexiones separada del inversor seguir las instrucciones descritas a continuación para la instalación del inversor y consultar el manual de instalación de la caja de conexiones para la instalación de ésta.

En caso de no querer instalar una caja de conexiones seguir las instrucciones descritas a continuación para la instalación del inversor.

Estos equipos disponen de un sistema de anclaje a la pared mediante pletina. A continuación se detallan los pasos para fijar el equipo correctamente. Se deberá tener en cuenta el peso del equipo.

La pletina de amarre superior de los equipos soporta el peso. El punto inferior fija el inversor a la pared y evita vibraciones.

1. Extraer la pletina de fijación tal y como muestra la siguiente figura:

- 2. Realizar los taladros con una broca adecuada a la pared y a los elementos de sujeción que se utilizarán posteriormente para fijar la pletina.
- 3. Fijar la pletina mediante elementos de sujeción apropiados para la pared sobre la que se instale. Los orificios de la pletina tienen un diámetro de 0.31 in (8 mm).

a = 8.66 in (220 mm).

4. Colgar el equipo de la pletina encajando las pestañas de ésta en las aberturas destinadas a tal fin de la parte trasera del equipo.

5. Marcar los orificios de amarre inferior, descolgar el inversor y taladrar dichos orificios. Volver a colgar el inversor de la pletina de amarre y atornillar los dos amarres inferiores. Estos orificios tienen un diámetro de 0.35 in (9 mm).

6. Si se desea instalar un candado.

Vista exterior del equipo

Vista interior del equipo

7. Verificar que el equipo ha quedado bien asegurado.

Una vez el equipo se ha instalado correctamente, se iniciará el proceso de conexión de éste. Conectar las conexiones en el siguiente orden:

- 1. Conexión de accesorios (opcional).
- 2. Conexión de AC.
- 3. Conexión de DC.

Es obligatorio seguir el orden descrito anteriormente. No alimentar hasta que se hayan realizado todas las conexiones y se haya cerrado el equipo.

6.3. Apertura y cierre de la envolvente

Para acceder al interior del equipo retirar los tornillos frontales de sujeción resaltados en gris en la siguiente figura y abrir la tapa tal y como se muestra a continuación.

Tras realizar las diferentes conexiones explicadas en los siguientes apartados se deberá cerrar el equipo antes de proceder a la puesta en marcha. Para realizar el cierre de la envolvente se deberán atornillar los tornillos indicados anteriormente aplicando un par de 53.1 lb.in (6 Nm).

Verificar el correcto cierre del equipo antes de iniciar la puesta en marcha.

En el apartado *"2.10. Descripción de accesos de cableado"* se indica el rango de diámetros de cable válidos para cada pasacables.

7. Conexión de accesorios

A lo largo de este capítulo se explica el proceso para conectar los accesorios opcionales en el equipo, así como el relé libre de potencial.

Opcionalmente es posible instalar un sistema de comunicación con objeto de establecer conexión con el equipo para su monitorización y configuración de forma local o remota, dependiendo del tipo de comunicación elegida y de las necesidades de la instalación.

Estos equipos disponen de serie de comunicación local vía RS-485. Adicionalmente se pueden establecer conexiones mediante otras tecnologías opcionales:

- Ethernet (incluida comunicación vía RS-485, de uso opcional).
- Ethernet TCP (incluida comunicación vía RS-485, de uso opcional).
- GSM/GPRS (incluida comunicación vía RS-485, de uso opcional).
- Bluetooth.
- Bluetooth (incluida comunicación vía RS-485, de uso opcional).
- Wi-Fi (incluida comunicación vía RS-485, de uso opcional).

En caso de utilizar la comunicación vía RS-485 opcional de cada accesorio de comunicación no se podrá utilizar de forma simultánea la comunicación RS-485 equipada de serie.

Consultar el manual de accesorios de comunicación correspondiente para ampliar esta información.

El cableado debe de conducirse al interior del equipo mediante un conduit, que se introducirá a través de un racor con el fin de mantener el grado de protección del equipo.

Leer detenidamente antes de iniciar el proceso de conexión.

7.1. Indicaciones de seguridad para la conexión de accesorios

Consultar el apartado "Condiciones importantes de seguridad" y las siguientes indicaciones antes de operar en el equipo.

Asegurar la ausencia de tensión en el equipo antes de iniciar la conexión.

No alimentar el equipo hasta que se hayan completado con éxito el resto de conexiones y se haya cerrado el equipo.

Ingeteam no se responsabiliza de los daños derivados de una conexión incorrecta.

Utilizar el Equipo de Protección Individual especificado en el apartado "Equipo de Protección Individual (EPI)".

7.2. Comunicación vía RS-485

Para comunicar vía RS-485 varios inversores se deberá crear un bus de comunicación. En cada inversor se deberá realizar la conexión tal y como se muestra en la siguiente figura. Se deberá instalar una ferrita (suministrada por Ingeteam) dando dos vueltas al cableado de comunicaciones.

* Borna para facilitar la conexión.

La norma recomienda que en los dos extremos del cableado RS-485 se instalen resistencias de fin de línea de 120 Ohm. Para activar el fin de línea en el último inversor del bus de comunicación poner a On los tres accionadores del switch indicado en la figura anterior.

Dentro del bus de comunicaciones sólo deberá tener activada la resistencia fin de línea el último inversor de dicho bus (los tres accionadores del switch en posición On). Para el resto de inversores, la resistencia deberá estar desactivada (los tres accionadores de cada uno de los switches deberán estar en posición Off).

En caso de realizar la comunicación vía RS-485 con un único inversor la resistencia de línea deberá estar habilitada.

Tras realizar las conexiones el cableado saldrá del equipo a través de un racor instalado en el precortado dedicado a los accesorios.

EN ES

Para asegurar el grado de protección del equipo atender al rango de diámetros permitidos indicado en el apartado *"2.10. Descripción de accesos de cableado".*

7.3. Comunicación vía Ethernet o Ethernet TCP

Es posible comunicar un inversor vía Ethernet o Ethernet TCP. En instalaciones con más de un inversor, para comunicar el primer inversor con el resto de inversores la comunicación entre ellos se realizará vía RS-485.

7.4. Comunicación vía GSM / GPRS

Es posible comunicar un inversor vía GSM / GPRS. En instalaciones con más de un inversor, para comunicar el primer inversor con el resto de inversores, la comunicación entre ellos se realizará vía RS-485. También es posible conectar con el primer inversor mediante RS-485.

7.5. Comunicación vía Bluetooth o Bluetooth + RS-485

Es posible comunicar un inversor vía Bluetooth o Bluetooth + RS485. En instalaciones con más de un inversor, para comunicar el primer inversor con el resto de inversores la comunicación entre ellos se realizará vía RS-485, siempre que el accesorio de comunicación sea Bluetooth + RS-485.

ΕN

ES

7.6. Comunicación vía Wi-Fi

Es posible comunicar un inversor vía Wi-Fi. En instalaciones con más de un inversor, para comunicar el primer inversor con el resto de inversores la comunicación entre ellos se realizará vía RS-485.

EN ES

7.7. Conexión del accesorio para la comunicación con vatímetro en autoconsumo instantáneo

Para comunicar el inversor con el vatímetro en un sistema de autoconsumo instantáneo es necesario instalar una tarjeta de comunicaciones.

Para ampliar información sobre la instalación de este elemento consultar el manual de autoconsumo instantáneo.

7.8. Conexión del relé auxiliar libre de potencial

Estos inversores están dotados de una salida libre de potencial la cual puede tener varias funcionalidades:

- Cierre del relé en caso de fallo de aislamiento (opción por defecto).
- Cierre del relé en caso de alarma de red, tensión o frecuencia fuera de rango.
- Cierre del relé en caso de cualquier alarma en el inversor.
- Cierre del relé al conectar el inversor a red.
- Cierre del relé si la potencia estimada del campo solar supera la potencia de la carga. Al seleccionar este modo, el usuario también tendrá que introducir otro parámetro de configuración, que es la potencia de la carga.

Para la conexión del relé libre de potencial se deberán tener en cuenta las características del relé:

Características relé libre de potencial		
Tensión nominal	250 VAC	
Corriente nominal	5 A	

La sección de los cables empleados deberá estar comprendida entre 24 AWG y 14 AWG. La conexión de este dispositivo se realiza mediante una manguera de al menos dos polos.

Para asegurar el grado de protección del equipo atender al rango de diámetros permitidos indicado en el apartado "2.10. Descripción de accesos de cableado".

Tras realizar las conexiones el cableado saldrá del equipo a través de un racor instalado en el precortado dedicado a los accesorios.

8. Conexión de AC

A lo largo de este capítulo se explican los requerimientos y el proceso para conectar el cableado de AC en el equipo.

Leer detenidamente antes de iniciar el proceso de conexión.

8.1. Indicaciones de seguridad para la conexión de AC

Consultar el apartado "Condiciones importantes de seguridad" y las siguientes indicaciones antes de operar en el equipo.

Asegurar la ausencia de tensión en el equipo antes de iniciar la conexión.

No alimentar el equipo hasta que se hayan completado con éxito el resto de conexiones y se haya cerrado el equipo.

Ingeteam no se responsabiliza de los daños derivados de una conexión incorrecta.

Utilizar el Equipo de Protección Individual especificado en el apartado "Equipo de Protección Individual (EPI)".

Durante la conexión del inversor debe asegurarse la correcta instalación de los cables en los borneros del equipo de manera que no queden partes en tensión de este cableado accesibles.

8.2. Requisitos del cableado para la conexión de AC

Para garantizar la seguridad de las personas, para el correcto funcionamiento del equipo y para cumplir la normativa aplicable, el equipo debe de conectarse a la tierra de la instalación.

Si el inversor y el punto de conexión a red están separados por una distancia que requiera el uso de cables con sección mayor se recomienda emplear una caja de distribución externa, cercana al inversor, para realizar este cambio de sección.

El dimensionado del cableado de tierra será responsabilidad del instalador y deberá atender a los requerimientos normativos aplicables en la instalación, teniendo una sección mínima igual a la de fase y neutro.

	Secciones cableado AC
Sección mínima	Acorde con la corriente que circula por los conductores
Sección máxima	0 AWG

8.3. Proceso de conexión de AC

El cableado debe de conducirse al interior del equipo mediante un conduit, que se introducirá a través de un racor con el fin de mantener el grado de protección del equipo.

Respetar la instalación de L, N y tierra tal y como se describe en este apartado para un correcto funcionamiento y para la seguridad de la instalación. Si se invierten las líneas L y N el inversor no funcionará.

Ingeteam no se responsabiliza de las consecuencias derivadas de una conexión incorrecta.

- 1. Retirar el tapón roscado del orificio de entrada e instalar el racor utilizando su junta aislante y tuerca.
- 2. Introducir el tubo plástico que conduce el cableado a través del racor. Asegurar el cierre del racor siguiendo las instrucciones del fabricante.
- 3. Guiar el cableado hasta las bornas correspondientes utilizando las guías dispuestas en el equipo.

4. La conexión se realizará mediante borna PCB. Cablear las tres fases a las bornas marcadas como *R* (*Vac3*), *S* (*Vac1*), *T* (*Vac2*). Cablear el neutro a la borna marcada como *N* y cablear el conductor de tierra a la borna marcada como *PE*.

- 5. Para realizar la conexión desaislar en el cable un tramo de 20 mm. El uso de terminal tubular es opcional.
- 6. Atornillar la borna con un par de 48.68 lb.in (5.5 Nm).
- 7. Asegurar mediante brida el cable a la fijación plástica dispuesta para tal propósito evitando que el cable quede tirante.

La manguera AC debe permanecer sin tensión mientras la puerta del equipo esté abierta.

Respetar la instalación de N y PE. No intercambiar con las fases.

Ingeteam no se responsabiliza de las consecuencias derivadas de una conexión incorrecta.

9. Conexión de DC

A lo largo de este capítulo se explican los requerimientos y el proceso para conectar el cableado de DC en el equipo.

Leer detenidamente antes de iniciar el proceso de conexión.

9.1. Indicaciones de seguridad para la conexión de DC

Consultar el apartado "Condiciones importantes de seguridad" y las siguientes indicaciones antes de operar en el equipo.

Asegurar la ausencia de tensión en el equipo antes de iniciar la conexión.

No alimentar el equipo hasta que se hayan completado con éxito el resto de conexiones y se haya cerrado el equipo.

Ingeteam no se responsabiliza de los daños derivados de una conexión incorrecta.

Utilizar el Equipo de Protección Individual especificado en el apartado "Equipo de Protección Individual (EPI)".

Durante la conexión del inversor debe asegurarse la correcta instalación de los cables en los borneros del equipo de manera que no queden partes en tensión de este cableado accesibles.

El cableado debe de conducirse al interior del equipo mediante un conduit, que se introducirá a través de un racor con el fin de mantener el grado de protección del equipo.

9.2. Requisitos del cableado para la conexión de DC

Se emplearán cables de cobre.

	Secciones cableado DC
Sección mínima	Acorde con la corriente que circula por los conductores
Sección máxima	2 AWG

9.3. Proceso de conexión de DC

- 1. En función de las características de la instalación será necesario utilizar uno o dos racores. Para cada entrada retirar el tapón roscado del orificio de entrada e instalar el racor utilizando su junta aislante y tuerca.
- 2. Introducir el tubo plástico que conduce el cableado a través del racor. Asegurar el cierre del racor siguiendo las instrucciones del fabricante.

3. La conexión se realizará a una borna de tornillo marcada con la polaridad y numeración del campo fotovoltaico. Estas bornas están marcadas como *XPV1+*, *XPV1-*, *XPV2+* y *XPV2-*. Es importante recordar que no todos los modelos de equipo tienen la misma corriente nominal por cada entrada.

- 4. Para realizar la conexión desaislar en el cable un tramo de 22/32 in (18 mm). El uso de terminal tubular es opcional.
- 5. Atornillar la borna con un par de 44.25 lb.in (5 Nm).
- 6. Asegurar la firmeza de las conexiones.

A la hora de dar tensión al campo fotovoltaico seguir los siguientes pasos:

- 7. Conectar en la caja de strings externa únicamente el string 1 del MPPT1.
- 8. Poner el seccionador DC en posición ON.
- 9. Comprobar que al menos un LED del display del equipo parpadea. En caso contrario, comprobar la polaridad del cableado (en el inversor y en la caja de strings), poner en posición OFF el seccionador DC y corregirla.
- 10. Poner el seccionador DC en posición OFF.
- 11. Desconectar el cableado del string 1 del MPPT1 en la caja de strings.
- 12. Repetir los pasos comprendidos entre el 7 y el 10, ambos inclusive, con el string 1 del MPPT2.
- 13. Conectar el resto de strings según las polaridades.

10. Manejo del display

Estos equipos incorporan un conjunto de pantalla y teclado para la comunicación con el instalador o usuario.

Esta interfaz permite la visualización de los principales parámetros internos, y el ajuste del sistema completo durante la instalación.

Los parámetros, variables y comandos están organizados en forma de menús y submenús.

[
	0	C)	0
ESC			\searrow	OK
				/

10.1. Teclado y LED

El teclado consta de cuatro teclas:

- ESC Sirve para abandonar la edición de un parámetro, para dejar un menú y regresar al nivel superior en la estructura, para no confirmar un cambio o no aceptar una propuesta.
- Con esta tecla se puede subir en el recorrido por la lista de parámetros o carpetas dentro del mismo nivel, o incrementar el valor de un parámetro editable en una unidad básica.
- Para bajar en el recorrido por la lista de parámetros o carpetas dentro del mismo nivel, o decrementar el valor de un parámetro editable en una unidad básica.
- OK Sirve para dar por válida la edición de un parámetro, para entrar dentro de un menú de nivel inferior en la estructura, para confirmar un cambio o aceptar una propuesta.

La carátula consta de tres LED, verde naranja y rojo:

Apagado: el inversor se encuentra desconectado.

Encendido: inversor conectado a la red.

Un parpadeo: las condiciones no son válidas para inyectar a red (tensión Vdc baja u otra alarma).

Seis parpadeos: las condiciones de conexión son validas. El inversor se encuentra en proceso de conexión a la red.

Consultar apartado "15. Solución de problemas".

Consultar apartado "15. Solución de problemas".

FΝ

10.2. Display

En la pantalla principal se muestran distintos datos del inversor:

- A. Fecha actual, AAAA-MM-DD.
- B. Porcentaje de reducción de potencia y motivo de dicha reducción*.
- C. Hora actual, hh:mm.
- D. Tensión y potencia del campo fotovoltaico. Ambos datos se visualizan de forma alterna.
- E. Potencia, tensión e intensidad inyectadas a la red pública.
- F. Vatímetro de autoconsumo instantáneo / INGECON EMS Manager. En función del modo de autoconsumo o de red diésel seleccionados se mostrarán el símbolo de un watímetro o de un INGECON SUN EMS Manager. Si aparece parpadeando se deberá a un fallo de comunicación con el aparato.

Pulsando la tecla OK se accede al menú principal. Pulsando la tecla \sim se visualiza la gráfica de potencia diaria. Pulsando \sim se visualiza la gráfica de energías en los últimos 24 días.

* Los motivos de reducción de potencia son los siguientes:

A: Configuración. El inversor está configurado para limitar su potencia.

C: Comunicaciones. El inversor está limitando la potencia tras haber recibido una consigna de reducción por comunicaciones.

F: Frecuencia de red. El inversor está limitando la potencia debido a la variación de la frecuencia de red.

M: Modo reservado.

Q: Prioridad de reactiva. El inversor está limitando la potencia debido a la inyección de potencia reactiva.

R: Rampa de conexión inicial. El inversor está limitando la potencia tras una reconexión a red.

S: Modo autoconsumo. El inversor está limitando la potencia debido al funcionamiento del modo autoconsumo.

T: Temperatura. El inversor está limitando la potencia debido a un sobrecalentamiento interno.

V: Voltaje de red. El inversor está limitando la potencia debido a la variación de la tensión de red.

10.3. Organización de menús

⁽¹⁾ Esta opción está disponible solamente si se ha seleccionado el modo *Autoconsumo*.

⁽²⁾ Menú destinado al instalador y protegido por contraseña.

10.4. Menú principal

2016-01-11	10.17
	10.17
Monitorización	
Eventos	
Inicio/Paro	
Ajustes	
Ajustes avanzados	
Datos de inversor	

El menú principal está compuesto por los siguientes submenús:

Monitorización	Este menú consta de una serie de pantallas que muestran las principales variables monitorizadas. A modo de ejemplo la pantalla de la derecha muestra la primera de ellas.
Eventos	Muestra los principales eventos como alarmas, avisos y motivos de paro.
Inicio/Paro	Poner en marcha y parar manualmente el funcionamiento del inversor.
Ajustes	Modificar parámetros para adaptar al equipo a diferentes condiciones de funcionamiento.
Ajustes avanzados	Para realizar ajustes avanzados en el inversor. Su acceso está restringido mediante contraseña de instalador. No es accesible para el usuario.
Datos de inversor	Datos de interés referentes al inversor: número de serie, firmware cargado, etc.

Para acceder a los distintos menús y submenús resaltar la opción deseada sobre fondo negro mediante las teclas \land y \checkmark , y pulsar sobre la tecla OK.

El menú *Ajustes avanzados* está restringido mediante contraseña. El acceso a dicho menú se permite únicamente a instaladores (personal cualificado). La contraseña de instalador es 3725.

10.5. Realizar la primera configuración del equipo

La primera vez que el inversor sea alimentado desde el campo fotovoltaico se mostrarán por display una serie de pantallas con el fin de guiar la configuración del inversor para su correcta conexión a la red eléctrica.

Seguir las indicaciones mostradas por display. Para la selección de país / normativa seleccionar el país en el que se instala el inversor. Si el país no se encuentra listado seleccionar la opción *Worldwide* y seleccionar la normativa aplicable. Tras seleccionar la normativa configurar la tensión y frecuencia.

10.6. Configurar la limitación de potencia

Esta opción limita porcentualmente sobre la nominal, la potencia activa máxima que el inversor puede inyectar a red.

Para configurar la limitación de potencia acceder a *Menú principal > Ajustes > Ajustes de potencia* e indicar el porcentaje de potencia activa máxima deseada.

10.7. Configurar el país / normativa

En función de la normativa aplicable en la instalación estos inversores deben trabajar según una serie de parámetros.

Para configurar el inversor según normativa acceder a *Menú principal > Ajustes avanzados > País normativa*. Seleccionar el país en el que se instala el inversor. Si el país no se encuentra listado seleccionar la opción *Worldwide* y seleccionar la normativa aplicable. Tras seleccionar la normativa configurar la tensión y frecuencia.

10.8. Configurar el número de Modbus

El número Modbus es el número de identificación del inversor dentro del bus de comunicaciones. Estos inversores disponen de dos líneas de comunicación RS-485, por lo que es posible configurar el número de Modbus para dos bus diferentes.

Para configurar el o los números de Modbus acceder a Menú principal > Ajustes > Modbus ID.

El COMM 1 ID es la identificación del inversor dentro del bus de comunicación generado desde la comunicación RS-485 integrada de serie en el equipo.

El COMM 2 ID es la identificación del inversor dentro del bus de comunicación generado desde el accesorio de comunicación opcional instalado en el INGECON Connect. En caso de que el inversor tenga activado el modo de autoconsumo como *Auto-limitado CG EM24* la modificación del COMM 2 ID no tendrá repercusión.

10.9. Configurar el relé auxiliar

Estos inversores están dotados de una salida libre de potencial la cual puede tener varias funcionalidades:

- Cierre del relé en caso de fallo de aislamiento (opción por defecto).
- Cierre del relé en caso de alarma de red, tensión o frecuencia fuera de rango.
- Cierre del relé en caso de cualquier alarma en el inversor.
- Cierre del relé al conectar el inversor a red.
- Cierre del relé si la potencia estimada del campo solar supera la potencia de la carga. Al seleccionar este modo, el usuario también tendrá que introducir otro parámetro de configuración, que es la potencia de la carga.

Para configurar el relé auxiliar acceder a *Menú principal > Ajustes > Cierre relé auxiliar*.

10.10. Configurar el coseno de phi

Modificando el coseno de phi es posible regular la potencia reactiva inyectada en la red.

Para modificar el coseno de phi acceder a *Menú principal > Ajustes avanzados > Referencia cosPhi.* Además del valor del coseno se podrá indicar su signo, positivo o negativo.

El inversor quedará configurado con el coseno de phi seleccionado. En caso de que el inversor reciba consignas instantáneas a través de comunicación prevalecerá el valor del coseno de phi indicado en dichas consignas.

10.11. Configurar el inversor para trabajar en modo autoconsumo

Estos inversores pueden trabajar dentro de un sistema de autoconsumo. Para estos casos es necesario configurar el inversor para el modo de autoconsumo del sistema.

Acceder al menú *Menú principal > Ajustes avanzados > Autoconsumo > Modo* para seleccionar el modo de autoconsumo.

Existen distintos modos de autoconsumo: sin limitación (MPPT), limitado EMS Manager y autolimitado CG EM24.

Sin limitación (MPPT)	Modo de autoconsumo sin limitación de inyección a red.
Limitado EMS Manager	Modo de autoconsumo limitado a través de INGECON EMS Manager. Para instalaciones con varios inversores.
Autolimitado CG EM24	Modo de autoconsumo instantáneo limitado por vatímetro. Para instalaciones con un solo inversor.

10.12. Configurar el inversor para trabajar en una red con generación diésel

En caso de que el inversor forme parte de un sistema de generación diésel, éste debe ser configurado específicamente. Para realizar esta configuración acceder a *Menú principal > Ajustes avanzados > País normativa > Diesel grid*. Una vez seleccionada *Diesel grid* configurar la tensión y frecuencia deseadas.

10.13. Poner el inversor en estado de funcionamiento

Para poner el inversor en estado de funcionamiento acceder a *Menú principal > Inicio/Paro*. En esta pantalla se indica el estado actual del inversor y posibilita, mediante la tecla OK, el cambio de estado. En caso de que el estado actual sea de paro pulsar OK para cambiar a estado de funcionamiento.

10.14. Poner el inversor en estado de paro

Para poner el inversor en estado de paro acceder a *Menú principal > Inicio/Paro*. En esta pantalla se indica el estado actual del inversor y posibilita, mediante la tecla OK, el cambio de estado. En caso de que el estado actual sea de funcionamiento pulsar OK para cambiar a estado de paro.

FΝ

10.15. Consultar la gráfica de potencia diaria

La gráfica de potencia diaria muestra la potencia generada a lo largo del día actual. Para consultar esta gráfica, desde la pantalla principal, pulsar \land . Además de la gráfica de potencia diaria aparecen listados los valores de la energía diaria (Ed), desde la primera conexión del día hasta la hora de consulta, la energía total (Et) desde la primera conexión del inversor* y la potencia instantánea (P).

* Este contador histórico volverá a cero en caso de realizar un reset a estado de fábrica.

10.16. Consultar la gráfica de energías de los últimos 24 días

La gráfica de energía de los últimos 24 días muestra la energía generada a lo largo de los últimos 24 días. Para consultar esta gráfica, desde la pantalla principal, pulsar \checkmark . Además de la gráfica de energías de los últimos 24 días aparecen listados los valores de la energía diaria (Ed), desde la primera conexión del día hasta la hora de consulta, la energía total (Et) desde la primera conexión del inversor* y la potencia instantánea (P)

* Este contador histórico volverá a cero en caso de realizar un reset a estado de fábrica.

10.17. Monitorizar las variables del inversor

La monitorización de las variables del inversor permite conocer los datos de funcionamiento del inversor en tiempo real.

Para visualizar la monitorización acceder a *Menú principal* > *Monitorización* e ir navegando a través de las distintas pantallas mediante las teclas \land y \checkmark .

Las distintas variables monitorizadas se listan a continuación.

Pac	Potencia AC del inversor, en watios.
Qac	Potencia reactiva AC del inversor, en voltiamperios reactivos.
Sac	Potencia aparente AC del inversor, en voltiamperios.
CosPhi	Coseno de phi. Es el coseno del ángulo de desfase existente entre la tensión y la corriente generada por el inversor.
Vac	Tensión AC del inversor, en voltios.
lac	Corriente AC a través del inversor, en amperios.
Fac	Frecuencia generada por el inversor, en herzios.
Pdc	Potencia DC del inversor, en watios.
Vdc	Tensión DC del inversor, en voltios.
Idc	Corriente DC, en amperios.
Riso	Resistencia de aislamiento del campo solar, en kilohmios.
Energía	Energía total inyectada por el inversor en toda su vida útil.

Tiempo	Tiempo total que el inversor ha estado inyectando a red.
Conexiones	Número total de conexiones a red.
Energía	Energía parcial inyectada por el inversor.
Tiempo	Tiempo parcial que el inversor ha estado conectado a red.
Conexiones	Número parcial de conexiones a red.
Pac Qac Sac CosPhi	 Potencia AC del inversor, en watios. Potencia reactiva AC del inversor, en voltiamperios reactivos. Potencia aparente AC del inversor, en voltiamperios. Coseno de phi. Es el coseno del ángulo de desfase existente entre la tensión y la corriente generada por el inversor. El coseno de phi puede ser positivo o negativo: Positivo: el inversor inyecta energía reactiva positiva. La corriente va adelantada respecto a la tensión.
Vac	 Negativo: el inversor inyecta energía reactiva negativa. La corriente va retrasada
Iac	respecto a la tensión. Tensión AC del inversor, en voltios. Corriente AC a través del inversor, en amperios.
Fac	Frecuencia generada por el inversor, en herzios.
Pdc	Potencia DC del inversor, en watios.
Pdc1	Potencia DC del string 1, en watios.
Pdc2	Potencia DC del string 2, en watios.
Riso	Resistencia de aislamiento del campo solar, en kilohmios.
Vdc1	Tensión de entrada DC del string 1.
Vdc2	Tensión de entrada DC del string 2.
Idc1	Corriente de entrada DC del string 1.
Idc2	Corriente de entrada DC del string 2.
Energía	Energía total inyectada por el inversor en toda su vida útil.
Tiempo	Tiempo total que el inversor ha estado inyectando a red.
Conexiones	Número total de conexiones a red.
Energía	Energía parcial inyectada por el inversor.
Tiempo	Tiempo parcial que el inversor ha estado conectado a red.
Conexiones	Número parcial de conexiones a red.
Pac Qac Sac CosPhi	 Potencia AC del inversor, en watios. Potencia reactiva AC del inversor, en voltiamperios reactivos. Potencia aparente AC del inversor, en voltiamperios. Coseno de phi. Es el coseno del ángulo de desfase existente entre la tensión y la corriente generada por el inversor. El coseno de phi puede ser positivo o negativo: Positivo: el inversor inyecta energía reactiva positiva. La corriente va adelantada respecto a la tensión. Negativo: el inversor inyecta energía reactiva negativa. La corriente va retrasada respecto a la tensión.
Vac1	Tensión AC fase 1 (S), en voltios.
Vac2	Tensión AC fase 2 (T), en voltios.
Vac3	Tensión AC fase 3 (R), en voltios.
Fac	Frecuencia generada por el inversor, en herzios.

ΕN

lac1	Corriente AC de la fase 1, en amperios.	
lac2	Corriente AC de la fase 2, en amperios.	
lac3	Corriente AC de la fase 3, en amperios.	
Pdc	Potencia DC del inversor, en watios.	
Pdc1	Potencia DC del string 1, en watios.	-
Pdc2	Potencia DC del string 2, en watios.	
Riso	Resistencia de aislamiento del campo solar, en kilohmios.	
Vdc1	Tensión de entrada DC del string 1.	
Vdc2	Tensión de entrada DC del string 2.	
ldc1	Corriente de entrada DC del string 1.	
Idc2	Corriente de entrada DC del string 2.	
Monitorización de strings	En esta pantalla se visualiza la monitorización de las corrientes de strings en equipos versión P y P+.	
Total		
Energía	Energía total inyectada por el inversor en toda su vida útil.	
Tiempo	Tiempo total que el inversor ha estado inyectando a red.	
Conexiones	Número total de conexiones a red.	
Parcial		
Energía	Energía parcial inyectada por el inversor.	
Tiempo	Tiempo parcial que el inversor ha estado conectado a red.	
Conexiones	Número parcial de conexiones a red.	
Pac	Potencia AC, en watios.	
Pwatt	Potencia inyectada a la red pública en modo autoconsumo, en watios.	
Ratio	Ratio de autoconsumo. Muestra el porcentaje del consumo de las cargas que está siendo alimentado por la potencia generada por el inversor.	

10.18. Visualizar alarmas, avisos y motivos de paro

Durante el funcionamiento del equipo es posible que se produzcan alarmas, avisos, avisos de strings y motivos de paro.

Para visualizar un listado acceder a *Menú principal > Eventos* y seleccionar el tipo de evento a visualizar. Las alarmas, avisos y avisos de strings visualizados son eventos en tiempo real. Los motivos de paro se muestran en forma de histórico. Para conocer más detalles sobre un motivo de paro, una vez aparece el listado completo, seleccionarlo mediante \land y \checkmark y pulsar OK.

Se puede consultar un máximo de 25 motivos de paro, por lo que, llegados a ese número, el equipo irá eliminando los más antiguos conforme necesite espacio para almacenar nuevos registros. Asimismo es posible, desde este menú, borrar el histórico de motivos de paro.

10.19. Consultar datos del inversor

Para consultar el número de serie del inversor, las versiones de firmware instaladas o el país / normativa configurado acceder a *Menú principal > Datos de inversor*.

2016-01-11	10:17
Datos de invers	or
N/S	330015290001
FW APP	ABI1000_G
FW BOOT	ABI1006_E
FW LCD APP	ABI1002_D
FW LCD BOOT	ABI1003

N/SNúmero de serie del inversor.FW APPFirmware aplicación.FW BOOTFirmware arranque.FW LCD APPFirmware aplicación del display.

FW LCD BOOT Firmware arrangue del display.

10.20. Realizar un reset a estado de fábrica

En caso de querer eliminar todas las configuraciones realizadas y los valores acumulados, devolviendo así al equipo a estado de fábrica, es necesario realizar un reset.

Para realizar un reset a estado de fábrica acceder a *Menú principal > Ajustes avanzados > Reset de fábrica*. Pulsar OK para iniciar el reset.

10.21. Realizar un test de ventilación

Temporalmente es necesario comprobar el correcto funcionamiento de los ventiladores del equipo. Estos equipos cuentan con la posibilidad de realizar un test de ventilación.

Para realizar el test de ventilación acceder a *Menú principal > Ajustes > Test ventilador*. Pulsar OK para iniciar el test. Los ventiladores del equipo comenzarán a girar. Esperar hasta que por display se indique que el test ha terminado. En caso de que uno o varios de los ventiladores no giren se mostrará por display un fallo de ventilación. Si todos los ventiladores giran el resultado del test será positivo.

El test de ventilación comprueba únicamente el giro de los ventiladores. Un test de ventilación positivo, por sí solo, no indica que el estado del sistema de ventilación sea correcto. Para asegurar el correcto funcionamiento del sistema de ventilación se deberá comprobar, de forma añadida, que no existan elementos que dificulten el paso del aire y que los ventiladores estén correctamente instalados.

10.22. Cambiar el idioma del display

Para modificar el idioma de visualización del display acceder a *Menú principal > Ajustes > Idiomas*.

10.23. Cambiar la fecha y hora

Para modificar la fecha y hora del inversor acceder a *Menú principal > Ajustes > Fecha y hora*.

10.24. Realizar un borrado parcial de datos acumulados

Estos inversores disponen de contadores totales y parciales de energía producida, tiempo conectado a red y número de conexiones a red producidas. Dichos datos pueden visualizarse en *Menú principal > Monitorización*.

Si se desea borrar los contadores parciales acceder a Menú principal > Ajustes > Borrado parcial.

10.25. Bloquear la pantalla del inversor

Si se desea bloquear el conjunto teclado / pantalla para evitar cambios no deseados acceder a *Menú principal* > *Ajustes avanzados* > *Bloqueo display* y habilitar el bloqueo. Para proceder al desbloqueo pulsar en este orden y mantener pulsado pulsado durante tres segundos ESC V OK. Volver a acceder a *Menú principal* > *Ajustes avanzados* > *Bloqueo display* y deshabilitar el bloqueo.

Pulsando \checkmark se accede a la información del país / normativa configurados.

11. Primera conexión a red

A lo largo de este capítulo se detalla el proceso a seguir para realizar la primera conexión a red del inversor.

Previamente se deberá revisar el equipo.

11.1. Revisión del equipo

Es necesario revisar el correcto estado de la instalación antes de la puesta en marcha.

Cada instalación es diferente según sus características, el país donde se encuentre u otras condiciones especiales que se le apliquen. En cualquier caso, antes de realizar la puesta en marcha, ha de asegurarse de que la instalación cumple la legislación y reglamentos que se le apliquen y que está finalizada, al menos la parte que se va a poner en marcha.

11.1.1. Inspección

Antes de la primera conexión a red del inversor se ha de realizar una revisión general consistente principalmente en:

Revisión del cableado

- Comprobar que los cables están correctamente unidos a sus conectores.
- Comprobar que dichos cables están en buen estado, y que en su entorno no existen peligros que puedan deteriorarlos, como fuentes de calor intenso, objetos que puedan causar su corte u disposiciones que les sometan a riesgo de impactos o tirones.
- Comprobar las polaridades de los cables de DC y AC.

Revisión de la fijación del equipo

Comprobar que el equipo está sólidamente fijado y no corre peligro de caer.

11.1.2. Cierre hermético del equipo

En las operaciones de instalación asegurarse de que las operaciones de conexión del equipo no han alterado el grado de estanqueidad del equipo.

Vigilar el ajuste correcto de los conectores y un buen cierre de los elementos pasacables.

Comprobar que se ha aplicado un par de 53.1 lb.in (6 Nm) a los tornillos de cierre de la envolvente.

11.2. Proceso para la primera conexión a red

La primera vez que el inversor sea alimentado desde el campo fotovoltaico se mostrarán por display una serie de pantallas con el fin de guiar la configuración del inversor para su correcta conexión a la red eléctrica.

1. La primera pantalla indica la dirección web desde la que se pueden descargar las actualizaciones para el inversor. Pulsar OK para avanzar a la siguiente pantalla.

FΝ

2. En la segunda pantalla se seleccionará el idioma en el que se quieren visualizar los menús del display.

```
Please, select an option
English
Español
Deutsch
Italiano
Français
Portugês
```

Resaltar el idioma deseado mediante las teclas / y v y pulsar OK.

3. En esta pantalla se seleccionará la fecha y hora actuales. Al acceder aparece parpadeando el año. Modificarlo utilizando las teclas / y /. Pulsar OK para pasar a seleccionar el mes. Seguir este proceso para seleccionar el día, hora, minutos y segundos actuales.

Fecha y hora	
2000-01-01	04:17:57
Salir	Cambiar

4. En este punto se seleccionará el país o normativa sobre la que se regirá el inversor.

Una vez realizada una inspección visual general, revisión de cableado y revisión del correcto cierre, proceder a alimentar el equipo (DC y AC).

En la primera conexión del inversor aparecen una serie de pantallas en las que se deberá seleccionar, en este orden, idioma, país y normativa aplicable. Tras su configuración aparecerá una pantalla de confirmación con las opciones seleccionadas.

Tras esta primera configuración seleccionar *Menú principal > Inicio/Paro > Inicio*, activando así el funcionamiento del inversor.

12. Actualización de firmware

Consultar el manual de carga de firmware donde se detalla el proceso de actualización.

Para descargar el manual acceder a la web de Ingeteam (www.ingeteam.com) y en la sección del modelo de inversor entrar a la zona de descargas. Aquí se aloja un archivo comprimido con el manual y la versión de firmware más actualizada.

Consultar el manual del INGECON SUN Manager para ampliar esta información.

La longitud máxima del cable USB utilizado para realizar la conexión no debe ser superior a 3 metros.

Con el fin de mantener el grado de protección del equipo tras realizar esta tarea siempre se deberá volver a instalar la tapa protectora retirada del conector USB.

Mientras el inversor permanezca conectado mediante USB el grado de protección del equipo será inferior al especificado a lo largo de este documento.

FΝ

13. Desconexión del equipo

A lo largo de este apartado se detalla el procedimiento para desconectar el equipo. En caso de querer operar en el interior del equipo es obligatorio seguir estas instrucciones en el mismo orden en el que aquí aparecen para quitar tensión.

13.1. Proceso de desconexión del equipo

- 1. Pasar a modo paro desde el display del inversor.
- 2. Quitar tensión AC desde un medio de desconexión externo al equipo.
- 3. Quitar tensión DC desde un medio de desconexión externo.
- 4. Esperar 5 minutos a que se descarguen las capacitancias internas existentes, a que se enfríen los elementos internos y a que se detenga el movimiento residual de las aspas de los ventiladores.
- 5. Comprobar ausencia de tensión en las entradas DC y AC.
- 6. Señalizar zona de corte (Vac y Vdc) con cartel de "Atención prohibido maniobrar ...". En caso de ser necesario delimitar la zona de trabajo.

14. Mantenimiento

Las labores de mantenimiento que se recomiendan serán realizadas con periodicidad mínima anual, salvo aquellas en que se indique lo contrario.

14.1. Condiciones de seguridad

El conjunto de condiciones que se detallan a continuación deben considerarse como mínimas.

Antes de abrir el equipo habrá que quitar tensión (ver apartado "13. Desconexión del equipo").

La apertura de la envolvente no implica en ningún caso la ausencia de tensión en el equipo, por lo que el acceso a éste solamente puede ser realizado por personal cualificado y siguiendo las condiciones de seguridad establecidas en este documento.

Ingeteam no se responsabiliza de los daños que pudieran causarse por una utilización inadecuada de los equipos. Toda intervención que se realice sobre cualquiera de estos equipos que suponga un cambio en las disposiciones eléctricas respecto a las originales deberán ser previamente propuestas a Ingeteam. Éstas deberán ser estudiadas y aprobadas por Ingeteam.

Una vez terminada la tarea de mantenimiento colocar nuevamente la tapa frontal y fijarla con los tornillos correspondientes.

Todas las comprobaciones de mantenimiento que aquí se recogen deberán hacerse con el conjunto de la máquina parada, en condiciones seguras de manipulación, incluyendo las especificadas por el cliente para este tipo de operaciones.

Para realizar las labores de mantenimiento en el equipo se han de utilizar el Equipo de Protección Individual especificado en el apartado *"Equipo de Protección Individual (EPI)"* en este documento.

14.2. Estado de la envolvente

Es necesaria una comprobación mensual del estado de la envolvente verificando el estado de los cierres y tapa, así como el anclaje de los equipos a sus amarres por la pared. Asimismo, se debe comprobar el buen estado de la envolvente y la no presencia de golpes o rayas que pudieran degradar la envolvente o hacerle perder su índice de protección. En el caso de que se apreciaran este tipo de defectos, se deberán reparar o sustituir aquellas partes afectadas.

Comprobar la ausencia de humedad en el interior de la envolvente. En caso de humedad, es imprescindible proceder a su secado antes de realizar conexiones eléctricas.

Revisar el correcto amarre de los componentes de la envolvente a sus correspondientes anclajes.

Comprobar el correcto estado de la junta estanca de la puerta del equipo.

14.3. Estado de los cables y terminales

Es necesario realizar una inspección anual del estado de los cables y terminales:

- Comprobar el correcto guiado de los cables de forma que estos no estén en contacto con partes activas.
- Revisar deficiencias en los aislamientos y puntos calientes, verificando el color del aislamiento y terminales.
- Comprobar que las conexiones están bien ajustadas.

14.4. Sistema de refrigeración

Comprobar mensualmente el sistema de refrigeración del equipo:

- Comprobar el estado de los ventiladores de extracción de aire, proceder a su limpieza y cambio si fuera necesario.
- Limpiar las aletas del radiador y las rejillas de refrigeración.
- Realizar un test de ventilación para comprobar el giro de los ventiladores (ver apartado "10.21. Realizar un test de ventilación").

15. Solución de problemas

En este apartado se detallan los problemas que pudieran darse en la instalación y funcionamiento del inversor.

La solución de problemas del inversor debe ser realizada por personal cualificado atendiendo a las condiciones generales de seguridad dadas en este manual.

15.1. Alarmas. Indicaciones de los LED

Alarma	Iluminación LED*	Descripción	Solución
Sobretensión Vdc1	Naranja, 6	Sobretensión en la entrada DC número 1	Comprobar las conexiones del campo solar y que la configuración serie-paralelo de los paneles es
Sobretensión Vdc2	Naranja, 6	Sobretensión en la entrada DC número 2	correcta, y no se supera la tensión máxima del inversor.
Sobrecorriente Idc1	Rojo, 1	Sobrecorriente en la entrada DC número 1	Comprobar la instalación en la parte de DC.
Sobrecorriente Idc2	Rojo, 1	Sobrecorriente en la entrada DC número 2	Si el fallo es repetitivo contactar con el SAT.
Sobretensión Vbus	Rojo, 2	Sobretensión en el bus	Comprobar las conexiones del campo solar y que la configuración serie-paralelo de los paneles es correcta, y no se supera la tensión máxima del inversor.
Sobretens. Inst. Vac	Naranja, 2	Sobretensión instantánea en la salida AC	Comprobar las conexiones del lado de AC. Comprobar que la tensión de la red eléctrica está
Vac fuera de rango	Naranja, 2	Tensión de salida AC fuera del rango definido	dentro de limites. Comprobar que los varistores AC no están dañados.
Sobrecor. Inst. lac	Rojo, 1	Sobrecorriente instantánea en la salida AC	Comprobar la instalación en la parte de AC.
lac fuera de rango	Rojo, 1	Intensidad de salida AC fuera del rango definido	Si el fallo es repetitivo contactar con el SAT.
Fac fuera de rango	Naranja, 3	Frecuencia de red AC fuera del rango definido	Comprobar las conexiones del lado de AC. Comprobar que la frecuencia de la red eléctrica está dentro de límites.
Fallo pwm DC/DC	Rojo, 3	Fallo de firmware en la fase DC/DC	
Fallo pwm DC/AC	Rojo, 3	Fallo de firmware en la fase de conversión DC/AC	Comprobar la instalación en la parte de DC v AC.
Fallo hw DC/DC	Rojo, 3	Fallo de hardware en la fase DC/ DC	Si el fallo es repetitivo contactar con el SAT.
Fallo hw DC/AC	Rojo, 3	Fallo de hardware en la fase de conversión DC/AC	
Alarma temperatura	Naranja, 4	Temperatura fuera del rango operativo	Puede ser normal si la temperatura ambiente supera la máxima del equipo. Comprobar el funcionamiento de los ventiladores. Proteger el inversor de la exposición directa de la luz solar. Refrigerar el lugar en que esté instalado el inversor.
Error fatal	Rojo, fijo	Error fatal	Desconectar el inversor de DC y AC. Esperar hasta que los LED se apaguen y volver a conectar. Si el problema persiste contactar con el SAT.
Paro manual	Naranja, fijo	El inversor se ha parado manualmente	Poner en funcionamiento el inversor a través del display.
Error de hardware	Rojo, 1	El inversor presenta un error de hardware	Desconectar el inversor de DC y AC. Esperar hasta que los LED se apaguen y volver a conectar. Si el problema persiste contactar con el SAT.
Corr. diferencial	Naranja, 5	Corriente diferencial fuera de rango	Comprobar que no existe un fallo de aislamiento en el campo solar. Comprobar que la capacidad parásita del campo solar no supera el máximo permitido.

ΕN

ES

Alarma	lluminación LED*	Descripción	Solución
Actualización de FW	Naranja, fijo	Paro del inversor por carga de firmware	Parada normal debido a la actualización del firmware del inversor.
Consumo de red	Naranja, 1	Potencia consumida de la red fuera del rango permitido	Puede deberse a un nivel de irradiancia baio. En
Baja pot. PV cnx.	Naranja, 1	La potencia generada en el campo fotovoltaico es insuficiente para conectar con la red AC	caso contrario, revisar el campo solar.
Fallo alim. eléc.	Rojo, 1	Fallo de alimentación de las tarjetas electrónicas	Comprobar la correcta conexión de los cables de DC. Abrir el equipo y comprobar la correcta conexión de la tarjeta de control.
Inyección ldc en red	Rojo, 3	Intensidad DC inyectada a la red fuera del rango permitido	Comprobar la instalación en la parte de AC. Si el fallo es repetitivo contactar con el SAT.
Cambio config.	Rojo, 1	Cambio de configuración del inversor	Parada normal debido a un cambio en la configuración del inversor.
Alarma aislamiento	Naranja, 5	Resistencia de aislamiento fuera de límites	Comprobar por display que la puesta a tierra del campo fotovoltaico está configurada correctamente. Buscar un fallo de aislamiento en el campo solar. Si uno de los polos está aterrado, comprobar el fusible de aterramiento.
Alarma satur. lac	Naranja, 5	Saturación de corriente AC	Comprobar la instalación en la parte de AC.
Baja Vdc	Naranja, 1	Tensión DC baja	Puede deberse a un nivel de irradiancia bajo. En caso contrario, revisar el campo solar.
Detección de arco eléctrico	Naranja, 8	Detección de arco eléctrico en la entrada DC	Comprobar el estado de la instalación conectada a la entrada DC del equipo.

* Se indica el número de parpadeos.

Avisos

Alarma	lluminación LED*	Descripción	Solución
Ventilador bloqueado	Naranja, 7	El ventilador podría estar bloqueado	Revisar el estado del ventilador y comprobar la no existencia de elementos que impidan su correcto funcionamiento
Alta temperatura	Naranja, 7	Regulación de potencia por temperatura superior a la temperatura de funcionamiento	Comprobar que la temperatura ambiente no supera la temperatura máxima especificada y que el inversor no está soportando la irradiancia directa del sol. Comprobar también el estado de los ventiladores.
Baja temperatura	Naranja, 7	Temperatura inferior a la temperatura de funcionamiento	Comprobar que la temperatura ambiente no es inferior a la mínima especificada.
Alta Vdc	Naranja, 7	Tensión de entrada DC alta	Comprobar las conexiones del campo solar y que la configuración serie-paralelo de los paneles es correcta, y no se supera la tensión máxima de MPP.
Comun. caja string	No aplica	No aplica	No aplica
Comun. autoconsum.	Naranja, 7	Fallo de comunicación con los dispositivos de autoconsumo (vatímetro o INGECON EMS Manager)	Comprobar la conexión de los distintos elementos. Si el error persiste contactar con el SAT.
Error en descargadores	Naranja, 7	Fallo en descargadores DC	Comprobar el estado de los descargadores y, en caso de ser necesario, reemplazar el descargador o los descargadores deteriorados.

* Se indica el número de parpadeos.

16. Tratamiento de residuos

Estos equipos utilizan componentes nocivos para el medio ambiente (tarjetas electrónicas, baterías o pilas, etc.).

Concluida la vida útil del equipo, el residuo debe ser puesto en manos de un gestor autorizado de residuos peligrosos para su correcto procesado.

Ingeteam siguiendo una política respetuosa con el medio ambiente, a través de este apartado, informa al gestor autorizado respecto a la localización de los componentes a descontaminar.

Los elementos presentes en el interior del equipo y que han de ser tratados específicamente son:

- 1. Condensadores Electrolíticos o que contengan PCB.
- 2. Tarjetas de circuitos impresos.
- 3. Pantallas de cristal líquido.

Notes - Notas

Europe

Ingeteam Power Technology, S.A. Energy

Avda. Ciudad de la Innovación, 13 31621 SARRIGUREN (Navarra) - Spain Tel: +34 948 28 80 00 Fax: +34 948 28 80 01 email: solar.energy@ingeteam.com

Ingeteam GmbH

Herzog-Heinrich-Str. 10 80336 MÜNCHEN - Germany Tel: +49 89 99 65 38 0 Fax: +49 89 99 65 38 99 email: solar.de@ingeteam.com

Ingeteam SAS

Le Naurouze B - 140 Rue Carmin 31676 Toulouse Labège cedex - France Tel: +33 (0)5 61 25 00 00 Fax: +33 (0)5 61 25 00 11 email: solar.energie@ingeteam.com

Ingeteam S.r.l.

Via Emilia Ponente, 232 48014 CASTEL BOLOGNESE (RA) - Italy Tel: +39 0546 651 490 Fax: +39 054 665 5391 email: italia.energy@ingeteam.com

Ingeteam, a.s.

Technologická 371/1 70800 OSTRAVA - PUSTKOVEC Czech Republic Tel: +420 59 732 6800 Fax: +420 59 732 6899 email: czech@ingeteam.com

Ingeteam Sp. z o.o.

UI. Koszykowa 60/62 m 39 00-673 Warszawa - Poland Tel: +48 22 821 9930 Fax: +48 22 821 9931 email: polska@ingeteam.com

America

Ingeteam INC.

5201 Great American Parkway, Suite 320 SANTA CLARA, CA 95054 - USA Tel: +1 (415) 450 1869 +1 (415) 450 1870 Fax: +1 (408) 824 1327 email: solar.us@ingeteam.com

Ingeteam INC.

3550 W. Canal St. Milwaukee, WI 53208 - USA Tel: +1 (414) 934 4100 Fax: +1 (414) 342 0736 email: solar.us@ingeteam.com

Ingeteam, S.A. de C.V.

Ave. Revolución, nº 643, Local 9 Colonia Jardín Español - MONTERREY 64820 - NUEVO LEÓN - México Tel: +52 81 8311 4858 Fax: +52 81 8311 4859 email: northamerica@ingeteam.com

Ingeteam Ltda.

Estrada Duílio Beltramini, 6975 Chácara Sao Bento 13278-074 VALINHOS SP - Brazil Tel: +55 19 3037 3773 Fax: +55 19 3037 3774 email: brazil@ingeteam.com

Ingeteam SpA

Bandera , 883 Piso 211 8340743 Santiago de Chile - Chile Tel: +56 2 738 01 44 email: chile@ingeteam.com

Africa

Ingeteam Pty Ltd.

Unit 2 Alphen Square South 16th Road, Randjiespark, Midrand 1682 - South Africa Tel: +2711 314 3190 Fax: +2711 314 2420 email: kobie.dupper@ingeteam.com

Asia

Ingeteam Shanghai, Co. Ltd. Shanghai Trade Square, 1105 188 Si Ping Road 200086 SHANGHAI - P.R. China Tel: +86 21 65 07 76 36 Fax: +86 21 65 07 76 38 email: shanghai@ingeteam.com

Ingeteam Power Technology India Pvt. Ltd.

2nd floor, 431 Udyog Vihar, Phase III 122016 Gurgaon (Haryana) - India Tel: +91 124 420 6491-5 Fax: +91 124 420 6493 email: india@ingeteam.com

Australia

Ingeteam Australia Pty Ltd. Suite 5, Ground Floor, Enterprise 1 Innovation Campus, Squires Way NORTH WOLLONGONG, NSW 2500 - Australia email: australia@ingeteam.com ABO2012IQM01_ 02/2016

Ingeteam

Ingeteam Power Technology, S.A.

www.ingeteam.com